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Abstract 

Crack detection using surficial images has been an important task in structural engineering. 

Recently, deep neural networks are being utilized extensively for image classification and 

pattern recognition. Deep neural networks are powerful tools that automatically extract 

different levels of image features and generate accurate predictions. This study investigates 

crack image classification using different deep neural network models such as variations of 

VGG16 along with traditional support vector machines (SVM). We compare the results 

of these models from both prediction accuracy and computational efficiency. The dataset 

utilized for this study consists of 2,255 concrete surface images with and without cracks. In 

our study, we find that particular deep neural network models perform better than traditional 

SVM in crack detection. The best experiment using a variation of VGG-16 achieves higher 

accuracy, which demonstrates the potential of deep learning models. 
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1 Introduction 

In the field of structural engineering, for monitoring, inspection and maintenance there is 
a great demand for bringing in automation. In the United States, the federal law enforces 
routine inspections every two years for both buildings as well as bridges. So it is imperative 
to make sure that these quality standards are met. This is exactly where image processing 
comes into the picture. Using deep convolutional neural networks, the images of bridges 
and buildings taken from unmanned aerial devices can be processed at a much faster rate 
in identification and detection of whether cracks are visible over the surfaces, which will, in 
turn, help the structural engineers to make necessary fixes to the structure by making sure 
the strength of the structure is maintained. 

The deep learning convolutional neural networks are a type of artificial neural network 
which has an input and an output layer, and in between they have various filtering layers, 
where each layer absorbs specific detail of an image, like angle, orientation, color, etc. Mil-
lions of images are sent through these layers, which will train the image to identify better. 
There are various ways in which the neural network will identify whether there is the presence 
of cracks in any given image or not: one is by labeling the images cracked and non-cracked, 
the second method is to do classification, and the third method would be a process called 
localization (where the exact area of the crack is located). In this project, we use the method 
of classification to classify whether the images have cracks or not. Here the efficiency of our 
network identifying the images depends on various parameters, such as the way the layers 
have been arranged along with how big the dataset to be trained is. 

This particular section showcases how our models operate at a high level to generate 
the required accuracy. As shown in Fig. 3, we see both the training procedure and the 
testing procedure. The training procedure has been represented by solid demarcations, and 
the testing procedure has been represented by dotted demarcations. The data that is being 
used to input in the CNN classifiers are a bunch of surface images of concrete buildings, 
bridges, and decks which have been taken by a DSLR camera. The data include images 
of all kinds; for example, there are images which have shadows in it, and there are some 
images which have very poor visibility of concrete cracks which might ultimately provide 
false positive values. These kinds of images have been deliberately included in the training 
and the testing set. In our dataset, any image which can be differentiated from a normal 
human eye as cracked/non-cracked has only been utilized. In totality, our dataset has 2,255 
raw images of resolution 128 X 128. 

In the images below, we can see how the concrete crack images have been segregated and 
processed. Most of these images have been cropped out to 128 X 128 pixels resolutions to 
keep the integrity of the dataset. For a few of the images, only the part of an image that 
contains the crack has been carefully chosen. The dataset images below show exactly the 
kind of images that have been chosen for this experiment. 
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Cracks No cracks (Background) 

Figure 1: Raw images to the left, output classification to the right. 

Figure 2: Some example images used for training. 

These 2,255 images are split out and are strategically placed in two folders namely cracked 
and no- cracked. The cracked folder contains the data (images) that are required for training, 
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and similarly, the non-cracked folder has all the data (images) required for training. However, 
in our dataset design, the folders cracked and non-cracked also contain sub-folders that have 
images for testing and validation. The cracked folder, which is our 1st classifier contains 
958 training images and 33 testing images. Similarly, the non-cracked folder contains 1,189 
training images and 75 testing images. Now the dataset that has been prepared is given as 
input to the CNN classifier to segregate the cracked images from the no-cracked ones. To 
summarize this proposed methodology, we have raw images as training data from which a 
dataset has been prepared. This is further split into training and testing/validation data. 
This split is trained on the CNN classifier and post-training, raw images are given as an 
input to the CNN classifier and the accuracy of the CNN is calculated. 

Figure 3: Concrete crack detection flowchart. 

2 Related Work 

Before experiments were carried out, various work in the related field of structural engineering 
has been studied and collated. These studies have utilized the applications of different deep 
learning models and they stand as the foundation for all the 3 experiments that have been 
carried out. Some of these models have used support vector machines, whereas most of 
these have some form of deep learning neural network tested. Even though some of the 
experiments seem to yield far lesser accuracy than the accuracy achieved in our model, 
it needs to be noted that most of these studies are applications in nature and have done 
comparative studies to pick the best neural network for the respective datasets that were 
utilized. Almost all of the studies have used concrete crack images taken from buildings and 
bridges. A few of the studies have used road pavement cracks for classification, however, 
from an implementation point of view, there is a necessity to go through these studies as 
the models used in our experiments are intended to produce higher accuracy and generate 
as few false positives as possible. 

A 2016 study utilized deep convolutional neural networks to classify whether cracks are 
present or not on roads (Zhang, Yang, Zhang, & Zhu, 2016). A relatively smaller dataset 
was used to perform this study, where the dataset included around 500 images of roads. Here 
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these images were of size 3264 X 2448 and all these images were taken from a smartphone. 
The objective of the study was to show whether the given image of the pavement did indeed 
have any cracks or not. ConvNet was the deep learning model utilized for the entirety of 
this study. The neural network consisted of considerably fewer layers making it less deep. 
The architecture had 4 convolutional layers followed by 2 fully connected layers. ReLU is 
the activation function used for this study just like most others. Also, stochastic gradient 
descent (SGD) was used for training where individual batch was consisted of 48 images and 
used 20 epochs. Not just a neural network study, but also an SVM was used for comparison 
and to show the superiority of using deep learning. It was seen post experimentation that 
the deep learning ConvNet model reached a precision of 0.86 and SVM showed a lower side 
of precision with 0.81. The recall was drastically higher for ConvNet at 0.93; however, SVM 
failed to provide a higher recall and reached the maximum value of 0.67. Overall the ConvNet 
achieved an F1 score of 0.89 coming out as the better model for accurate classification. 

A conference paper published in the year 2018 did a study on the feasibility of using 
deep learning convolutional neural networks for structural inspection (Dorafshan, Thomas, 
Coopmans, & Maguire, 2018). Two modes were used for assessing whether a deep learning 
model can be incorporated for this or not. These two modes are fully trained and transfer 
learning. This paper mentioned AlexNet as its primary model against which various other 
models are tested. This architecture is more detailed in structure and much deeper than 
the ConvNet architecture. It consists of in total 5 convolutional layers, followed by 3 fully 
connected layers. ReLU is the activation layer used, along with a softmax and a classification 
layer. The study was done on 3 sets of data, which contained images taken from 3 cameras 
with varying resolutions. Data collected from the Nikon camera (16 MP) were of resolution 
4068 X 3456. Secondly, they used a GoPro (12 MP) with the resolution of images being 
4000 X 3000 and finally DJI Mavic camera of the same resolution and dimensions as that 
of GoPro. Overall it was seen that the dataset which consisted of higher resolution images 
yielded better testing accuracy, where the FT and TL stood at 79 percent and 89 percent. 
It was concluded that in using deep learning models, clarity and resolution of datasets made 
more impact rather than any particular model. 

A performance-based study involves various deep learning convolutional networks for 
¨ detecting cracks in concrete bridges and building (Ozgenel & Sorguç, 2018). This study did 

not introduce any novel deep learning model, rather ran their dataset on 7 pre-trained neural 
networks namely AlexNet, ResNet, VGG-16, VGG-19, GoogleNet, ResNet 50, ResNet 101, 
and ResNet 152. It was observed that for smaller data size, VGG-16 and GoogleNet yielded 
96 percent accuracy; however for a bigger dataset of over 14,000 images ResNet 101 and 
ResNet 152 showed an overwhelming accuracy of 97 percent. 

Apart from looking at studies involving only neural networks, it is important to look 
at other aspects of the network build such as edge detectors. A 2019 study was performed 
solely on using various edge detectors both spatial and frequency based (Dorafshan, Thomas, 
& Maguire, 2019). The experiment used 4 spatial edge detectors namely Roberts, Prewitt, 
Sobel, and Laplacian of Gaussian(LOC). Along with these 2, frequency-based edge detectors 
were also studied which are Butterworth and Gaussian. By far LOG resulted in an accuracy 
of 92 percent which is much higher than any other edge detector. Furthermore, an interesting 
study was also taken into consideration before moving ahead with the experiments. This 
study was done in the year 2012, which considered a deep learning neural network with 
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varying layers to assess the error rate (Krizhevsky, Sutskever, & Hinton, 2012). The study 
considered images from ImageNet repository, in which around 15000 images were used for 
training and testing. It was seen that out of the 3 models trained and tested (SIFT, Sparse 
Coding, and CNN), CNN achieved the least error rate with tier-1 generating a 37.5 percent 
error rate and tier-5 generating a much lesser error rate of 17 percent. 

3 Support Vector Machines 

Support vector machines are one of the ways in machine learning where images can be 
classified and tested along with training accuracy plotted out (Moussa & Hussain, 2011). 
A support vector machine is also a kind of supervised learning model. In the data pre-
processing stage, whichever features need to be used are segregated and are usually mapped 
on to a higher dimensional space to successfully distinguish the images that have a crack 
from the non-cracked ones. What SVM does is, it identifies a bunch of points in every class 
which is closer to the other classes. Once it does so, the SVM calculates a hyper-plane that 
distinguishes between the classes. This hyper-plane that is plotted out is usually called the 
maximum-margin hyper-plane and it is what makes the SVM scalable and robust. After the 
process of training is performed by the SVM, the only part left would be the testing. In 
testing, all the SVM does is to try to accurately categorize which class the images belong to, 
either cracked or non-cracked. The mathematical implementation of support vector machines 
is given below. 

Initially we will define a particular hyper-plane (Gareth, 2010) 

x : f(x) = xw + w0 = 0 

The output that we derive out of this classifier is actually defined by the following only in 
case where x has already been given 

G(x) = sign(f(x)) 

Now let us assume that we have a training dataset of size n, i.e., (x1,y1)....(Xn,Yn) 

f(xi) >= 1, if yi = 1 

f(xi) >= −1, if yi = −1 

We shall denote the hyper-planes as follows H0 = x : f(x) = 1 and H1 = x : f(x) = −1. 
Here when we talk about the margin, it is the space between both of the hyper-planes H0 

and H1. So what the SVM does is, it will identify the hyper-planes with respect to the 
hyper-plane with the biggest margin. The diagramatic representation of what a hyper-plane 
looks like is provided in the image below, where we can see how SVM uses the concept of 
a hyper-plane. In the figure, we can see two symbols, squares and circles. Here the squares 
represent class 1 and the circles represent class 2. Here both of these classes are classified 
by the hyper-plane function : wx-b=0. 
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Figure 4: The hyper-plane margin. Two classes of points: circles and squares classified by 
hyper-plane wx-b=0. 

When using SVM as a classifier, it is normal to encounter a linear hyperplane between 
the two classes. But this particular feature does not need to be manually implemented to 
have a hyperplane, instead a technique of SVM known as kernel trick can be utilized. So 
here we have an SVM kernel which essentially takes up a low dimensional input into a higher 
dimensional space. Then the inseparable problem is transformed into a separable problem. 
Coming to the implementation aspect of the support vector machine, Python provides an 
built-in library known as sci-kit learn. So in brief, the sci-kit library needs to be implemented 
first, followed by the creation of the object, performing all the necessary model fitting and 
in the end prediction is done. In essence, an SVM is an algorithm primarily utilized for the 
process of classification. 

4 Deep Learning Models 

Two different deep learning models have been used here to show which could be a better fit 
in this scenario. Both the deep learning models have the same type of layers and the exact 
activation functions. In this section, we will see all the layers that have been used to build 
this CNN architecture. The overall layers consist of an input layer, multiple convolutional 
layers, max-pooling layers, activation layer, fully connected layers, batch normalization and 
finally an output layer. We call any neural network as a deep convolutional neural network 
only when the particular network is composed of multiple layers. Before proceeding with 
the explanation for the different deep learning models used in the experiments, let us see 
the kind of images used for our dataset. Below are the examples of cracked and non-cracked 
data used in the experiments. 
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Figure 5: Cracked images from the dataset. 

Figure 6: Non-cracked images from the dataset. 

4.1 Overall Architecture of Both Models 

In our architecture, we have an input layer which takes in the images of resolution 128 X 128 
as input. Here the input images are all RGB images. These images are further generalized 
to a resolution of 1 X 1 X 96 in the L5 layer. Now, these 96 images as vectors are loaded 
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onto the activation layer (Rectified Linear Unit), about which explanation is provided in the 
corresponding section. Post which we have a softmax layer, which is predominantly used 
to predict if there is crack or not (Cha, Choi, & Büyüköztürk, 2017). This happens after 
the 4th convolutional layer. Our architecture also holds batch normalization in layers 1, 3, 
and 5. All the layers’ functionalities are explained in the following subsections. Below is the 
breakdown of all the layers and their respective features in Table 1. 

Figure 7: Overall architecture of the MatConvNet. 

Table 1: Dimensions of the layers. 

Layer Height Width Depth Operator Height Width Depth No Stride 
Input 128 128 3 C1 20 20 3 24 2 
Layer 1 64 64 24 P1 7 7 - - 2 
Layer 2 32 32 24 C2 15 15 24 48- 2 
Layer 3 16 16 48 P2 4 4 - - 2 
Layer 4 8 8 48 C3 10 10 48 96 2 
Layer 5 1 1 96 ReLU - - - - -
Layer 6 1 1 96 C4 1 1 96 2 1 
Layer 7 1 1 2 Softmax - - - - -
Layer 8 1 1 2 - - - - - -

In comparison with the above model, a VGG-16 deep learning model is built with similar 
activation functions and layers. However, this VGG-16 has a different number of convo-
lutional, pooling and fully connected layers. Below is a diagrammatic representation of 
VGG-16 architecture. 
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Figure 8: VGG-16 network architecture. 

As we can see from the architecture model above, there are various convolutional layers. 
For the first two convolutional layers, we have an associated max pool layer. In the table 
below, we can see the complete setup of how the layers have been arranged, along with 
the filter and stride sizes. The output shape feature is how the dimensions of the image 
are modified as it approaches and passes through various layers and filters. It is a typical 
feature of neural networks where the size of the image is resized in every layer to extract 
the most of the features, and alongside the number of filters keeps on increasing. At the 
end of the network, we have 3 dense layers. All the 3 dense layers use ReLU activation. 
Creating the softmax layer would be the final one in the neural network before it could be 
trained. VGG-16 is one of the most complex and huge neural networks with over 138 million 
parameters. 
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Table 2: VGG layers dimensions. 

Layer (type) Output Shape Param Number 
conv2d 1 (Conv2D) (None, 128, 128, 64) 1792 
conv2d 2 (Conv2D) (None, 128, 128, 64) 36928 

max pooling2d 1 (MaxPooling2 (None, 64, 64, 64) 0 
conv2d 3 (Conv2D) (None, 64, 64, 128) 73856 
conv2d 4 (Conv2D) (None, 64, 64, 128) 147584 

max pooling2d 2(MaxPooling2 (None, 32, 32, 256) 0 
conv2d 5 (Conv2D) (None, 32, 32, 256) 295168 
conv2d 6(Conv2D) (None, 32, 32, 256) 590080 
conv2d 7 (Conv2D) (None, 32, 32, 256) 590080 

max pooling2d 3 (MaxPooling2 (None, 16, 16, 256) 0 
conv2d 8 (Conv2D) (None, 16, 16, 512) 1180160 
conv2d 9 (Conv2D) (None, 16, 16, 512) 2359808 
conv2d 10 (Conv2D) (None, 16, 16, 512) 2359808 

max pooling2d 4 (MaxPooling2 (None, 8, 8, 512) 0 
conv2d 11(Conv2D) (None, 8, 8, 512) 2359808 
conv2d 12 (Conv2D) (None, 8, 8, 512) 2359808 
conv2d 13 (Conv2D) (None, 8, 8, 512) 2359808 

max pooling2d 5 (MaxPooling2 (None, 4, 4, 512) 0 
flatten 1 (Flatten) (None, 8192) 0 
dense 1 (Dense) (None, 4096) 33558528 
dense 2 (Dense) (None, 4096) 16781312 
dense 3 (Dense) (None, 2) 8194 

4.2 Convolutional Layer 

The convolutional layer is responsible for 3 main operations in the architecture: initially, it 
does a dot product (matrix multiplication) of the given input array and the filter. Here the 
weights associated with the filter are randomly populated. There is the usage of stochastic 
gradient descent (SDC) for fine-tuning of the training values. We should also make a note 
that the size of the filter is the same as that of the size of the sub-array and the size of the 
filter is smaller than that of the size of the original input array. After we have done with 
the dot product, the values obtained from the dot product are added along with the bias. 
The primary reason for using convolutional layers is to reduce the amount of computation 
cost and also to reduce the size of the input data. Below is the image showing how the dot 
product generated is summed. This is specifically what happens in the convolutional layer. 
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Figure 9: Convolution example. 

4.3 Pooling Layer 

One of the extremely important layers to include in any convolutional neural network is the 
pooling layer. The primary purpose of utilizing a pooling layer is to reduce the size of the 
given input array. This entire process of reducing the overall size of the input array is called 
downsampling. There are multiple ways of using the pooling layers. In our model, we have 
used the process of max-pooling, in which the layer takes up the maximum elements from 
the subarray of the input array. A study (Scherer, Müller, & Behnke, 2010) showed that 
utilizing the process of max-pooling is the best when using images as our datasets. As a 
reference from this study, for this project, all the pooling layers that have been chosen are 
max-pooling layers. Below is a diagrammatic representation of the max-pooling layer. 

Figure 10: Pooling example. 
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4.4 ReLU Layer 

ReLU is the activation layer that we will be using in our CNN model. One more 2010 study 
(Nair & Hinton, 2010) claimed that whenever we use sigmoid based functions, the saturating 
nonlinearities will slow down the computation process. Because of this, ReLU is being used 
as a non-linear function in this particular model. In the figure below, we could see various 
non-linear functions. Here ReLU has no bounds when it comes to the value for output; 
however, the input values here cannot be negative. As ReLU has zeroes and ones (0,1) as 
its gradients, it avoids a lot of complex sigmoid functions and hence makes the computation 
much easier and faster assisting in providing superior accuracy. 

Figure 11: ReLU non-linear functions. 

4.5 Softmax Layer 

Softmax is one of the final layers in any given deep learning architecture. This is primarily 
utilized for processing the input data. This layer puts out probabilities of outcomes in the 
form of a vector. However, we need to keep in mind that the softmax layer might get costly 
when more classes are used. In such a situation, we could always use a concept known as 
candidate sampling which will not consider all the classes but will limit its computations 
only to a few specific classes. It also needs to be kept in mind that a softmax layer usually 
just considers 1 member per given class and in the situations where an object belonging to 
multiple numbers of classes, this will not work with the softmax layer. If we encounter such 
a situation, we could always use logistic regression. 
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5 Experiments and Results 

After pre-processing the dataset and creating a databank that is suitable enough to run 
on various models, the process of training and testing has been performed. There are a 
total of 2,255 images. We random split the data such that 10 percent of the data is used 
for testing and the rest of the 90 percent of the data is used for training. We repeat the 
process five times and save the data partitions as five folds. Cross-validation is performed. 
Specifically, the model runs five times and each time it runs on a different data fold. The 
model accuracy is averaged over five folds. All three different models run on the same data 
partitions. The first model is a Support Vector Machine (SVM), the second one and the 
third one are variants of VGG-16 models. Here the variant means, different activation layers 
and the different number of convolutional layers. All the 3 models have been implemented 
using Python. 

5.1 Image Classification using Support Vector Machines 

The input data folder consists of two folders which are ‘train’ and ‘test’. Both of these 
folders contain cracked images along with non-cracked images. There are in total of 227 test 
images that are used in the following experiment. Python is the choice of the programming 
language used for this experiment along with sci-kit learn as the library used for the process of 
classification. Initially, the Python program is written in Jupyter Notebook. Various libraries 
have been imported for making sure the SVM is implemented correctly and satisfactorily. 

from pathlib import Path 
import matplotlib .pyplot as plt 
import numpy as np 
%matplotlib notebook 
from sklearn import svm , metrics , datasets 
from sklearn .utils import Bunch 
from sklearn .model_selection import GridSearchCV , train_test_split 
from skimage .io import imread 
from skimage .transform import resize 

Above are all the libraries that have been imported to implement this support vector ma-
chine model. matplotlib is a library used to plot and it also provides an object-oriented API 
for embedding these plots. numpy is the library required for doing any numeric calculations, 
containing multidimensional arrays and matrix data structures. sklearn also called sci-kit 
learn is the core library in this experiment. Its functionality includes linear and logistic 
regression along with classification for which it predominantly uses the kth nearest neighbor 
algorithm. 

def load_image_files(container_path , dimension =(64 , 64)): 

Above is the data loading function, which takes in images files as input and stores them 
into a container. There are sub-folders within the input folder, where each sub-folder is 
treated as an individual class. 

images = [] 
flat_data = [] 
target = [] 
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for i, direc in enumerate (folders): 
for file in direc .iterdir () : 

if (str (file ). endswith(".jpg ")): 
img = imread( file ) 
img_resized = resize(img , dimension , anti_aliasing =True , 

mode =’reflect ’) 
flat_data .append (img_resized .flatten ()) 
images .append (img_resized) 
target .append (i) 

flat_data = np. array (flat_data) 
target = np. array (target) 
images = np. array (images) 

Once the data has been loaded, images and target arrays are created and the folders are 
enumerated till every ‘.jpg’ has been loaded into the array. Now these array elements are 
resized and flattened. Once the above processes are performed, the NumPy array contents 
are copied back to the target and images arrays. Then a bunch is returned which contains 
the flatten images NumPy array along with the image classification dataset. 

Here the split function is not used for splitting the data into train and test sets. Data is 
already divided into train and test folders. As a split function also does random split, it has 
been avoided as the dataset has to use a specific number of images as its train and test sets. 

param_grid = [ 
{’C’: [* np. arange (0.1, 1.1, 0.1)], ’kernel ’: [’linear ’]} , 
{’C’: [* np. arange (0.1, 1.1, 0.1)], ’gamma ’: [0. 0001 ], ’kernel ’: [’rbf ’]} 

, 
] 

svc = svm .SVC() 
clf = GridSearchCV(svc , param_grid , cv =5, n_jobs =4, verbose =5) 
clf .fit(image_dataset_train .data , image_dataset_train .target) 

The above code snippet shows the parameter optimization used for the experiment. Grid 
search is also performed specifically for hyperparameter tuning. Cross-validation is also 
performed (cv=5), which means the model runs 5 times and every time it runs, its accuracy 
is recorded. After the code runs for 5 times, all the 5 accuracies are summed up and averaged 
out. The average value obtained would be the cross-validated accuracy which could be 
considered as the actual accuracy of the model. 

y_pred = classifier .predict(image_dataset_test .data) 

This is the final step in the SVM classifier, where the test dataset is run over the classifier 
and its testing accuracy is predicted. With the execution of this method, the respective 
training and testing accuracies are printed out. After the process of cross validation, the 
SVM classifier was able to generate an accuracy of about 82 percent on the validation set. 
Below is the screenshot of one of the runs. 

5.2 Image Classification using MatConvNet 

After the first experiment performed using the SVM classifier, the second experiment involves 
the usage of deep learning to classify the dataset. Here a variant of VGG-16 has been used. 
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Table 3: Cross validation results for training and testing accuracy of SVM. 

Fold Linear SVM Training Accuracy (%) Linear SVM Testing Accuracy(%) 

1 100 85.84 

2 100 84.07 

3 100 85.40 

4 100 75.66 

5 100 79.20 

Average 100 82.03 

This deep learning neural network consists of 4 convolutional layers L1, L3, L5, and L7, two 
pooling layers L2 and L4, a ReLU layer L6 and the final softmax layer L8. Note that batch 
normalization happens at all the convolutional layers. The same data that was used in the 
SVM classifier has been used for training and validation. Here for the training, we use 2,028 
images and for validation, we use 227 images. Out of the entire dataset, 10 percent of the 
images are used for the process of validation. 

import numpy as np 
import os 
import pickle 
import tensorflow as tf 
import time 
from datetime import timedelta 
import cv2 ,sys 
from pathlib import Path 

As observed above, Tensorflow is imported, as it serves as our primary deep learning 
framework throughout this experiment. Along with that, we utilize the basic NumPy for 
numerical calculations and also for the creation of NumPy arrays. DateTime and time delta 
are used to keep track of how long the model takes to train the network completely. It 
might be surprising to see a pickle library imported in the above code snippet, the reason 
being creating a ‘.pkl’ cache file. Before starting the training process, make sure to cache 
the input data into a ‘.pkl’ file for usage throughout the entirety of the training process. 
One more advantage of using a pickle file is to save the model into a ‘.pkl’ file as it is less 
time-consuming. 

Once the necessary libraries have been successfully imported, the next step performed 
here is to specify the input directory from where the images need to load. The entire path 
of the input directory needs to be provided. Similarly, an output directory also needs to 
be specified along with its path where the TensorFlow model can be saved. Part of this 
experiment also includes the creation of a cache-wrapper function. As explained in the 
previous section, this function is solely responsible for identifying if there is an existing 
cache file or not. Followed by which, another wrapper function is used for creating a dataset 

20 



object. The purpose of this is to make sure that the order in which the filenames appear 
will be consistent every time the data is loaded. 

def one_hot_encoded(class_numbers , num_classes =None ): 

One hot encoding function is used for the generation of an integer array. This particular 
function takes in two values which are class numbers and number of classes. The number 
of classes functionality is unique, where depending on the number of folders, the number of 
classes is created. For example, in our experiment, we have two folders namely ‘cracked’ and 
‘non-cracked’. So here the method iterates over the folders and every folder is treated as a 
class. 

A dataset method is specified which takes in the input data. Depending on the structure 
of the directory, the code detects how many classes are there based on the previous code 
snippet where we specified the number of classes. It is necessary to stick to the following 
directory structure, especially for this experiment as the data has been arranged in a par-
ticular way. If the structure of the directory is changed, it is important to make necessary 
changes to the code which takes in the input data, as directory structures can be specific to 
the way data may be loaded and classes determined. The order in which the directory has 
been structured for our dataset is as follows: “Cracky/Crack/Train/Test”. And similarly 
“Cracky/No-Crack/Train/Test”. So here we have two classes, ‘Crack’ and ‘No-Crack’. The 
number of sub-folders within the root folder determines the number of classes. 

The initialization of various layers of the neural network would be the next few steps 
that are undertaken. The first convolution layer is initiated which specifies the input (the 
previous layer), number of input channels, size of the filter which is the width and height of 
the filter, along with the number of filters. 

def new_conv_layer( input ,num_input_channels ,filter_size ,num_filters): 

Max pool layers are initiated with layer details such as layer size, layer ksize and the 
number of filters in the layer, and strides. 

def max_pool(layer ,ksize ,strides): 

def new_fc_layer( input ,num_inputs ,num_outputs ,use_relu =True ): 

Post creation of all layers, the input data is given to the neural network to train for a 
specific number of iterations. Here 1,500 iterations are used. The individual batch size is 64 
images. 

model .optimize(num_iterations) 

As opposed to the SVM classifier, this deep learning model produced a staggering 92 
percent accuracy. The accuracy was confirmed after a cross-validation procedure where the 
model is trained several times and averaged out. 
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Figure 12: Accuracy of image classification using MatConvNet. 

5.3 Image Classification using VGG-16 

A critical requirement of these studies is to draw in a comparison between various machine 
learning models. As explained and shown in the previous section where the data was run 
over a MatConvNet, similarly the data is run over a VGG-16 network. Here it is to be noted 
that we have not used transfer learning, but instead have opted to use it as a fully trained 
network. The VGG-16 model has been built from scratch with a definitive layer set. Here 
tweaking is done to swiftly be able to run our dataset over the network. Below we can see 
the libraries imported and necessary to start building this model. 

import keras , os 
from keras .models import Sequential 
from keras .layers import Dense , Conv2D , MaxPool2D , Flatten 
from keras .preprocessing .image import ImageDataGenerator 
import numpy as np 
from keras .optimizers import Adam 
from keras .callbacks import ModelCheckpoint , EarlyStopping 
import matplotlib .pyplot as plt 

Instead of using TensorFlow, we use a TensorFlow wrapper Keras as the primary frame-
work. Sequential is used to run the layers in a specific order. Numpy is used for mathematical 
calculations and array implementations. Here early stopping is utilized to halt the training 
once the model reaches the required accuracy and does not go beyond that. 

22 



def vgg16model () : 
model = Sequential () 
model .add(Conv2D(input_shape =(128 , 128 , 3), filters =64, kernel_size =(3 

, 3), padding ="same ", activation = 
"relu ")) 

model .add(Conv2D(filters =64, kernel_size =(3, 3), padding ="same ", 
activation ="relu ")) 

As observed in the above code snippet, there is a calling of sequential function, which 
dictates how the below-initiated layers are executed in order. Here a convolutional layer is 
created with input size the same as that of our images. Using 64 filters and ReLU as the 
activation layer. Similarly, multiple convolutional and max-pooling layers are created. It has 
to be noted that all of the convolutional layers use the only ReLU as the activation function. 

model = vgg16model () 
opt = Adam(lr =1e -4) 

As we can see above, one of the very important aspects of any neural network would 
be the learning rate. This dictates how fast or slow, the model learns from the given input 
data. The slower the learning rate, the better trained the neural network will be, provided 
the data is clean enough. Here we are using an ‘adam optimizer’ for the learning function. 
Here the learning rate applies to individual iterations. 

Post-training, it was seen that the VGG-16 model has a better accuracy at classification. 
It was observed that just in 5 epochs the VG-16 model was able to achieve an accuracy of 
93.3 percent accuracy. The accuracy increased in comparison with the MatConvNet. On a 
similar dataset that was run over SVM, MatConvNet, and VGG-16, VGG-16 came out as a 
better model to use for image classification. 

In the table below, the complete results of the 3 experiments are given. All these values 
have been verified using the N-fold cross-validation approach. All the models are trained 5 
times and the resultant accuracies have been averaged out. The table also lists the dedicated 
time taken by individual models to reach maximum training accuracy. The models are not 
locally run in the machine but have been run over a dedicated server. It is seen that, even 
though VGG-16 has better accuracy, it takes more time than SVM and MatConvNet to 
fully train as it has more layers. The second column shows the accuracy achieved by all the 
models on the validation test set. 

Table 4: Model accuracy and time to reach max training accuracy. 

Model Test Accuracy(%) Training Time(min) Parameters 
SVM 82.03 2.1 16384 

MatConvNet 92.38 4.41 677,643 
VGG-16 93.31 16.8 65,062,722 
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6 Conclusion 

In this study, various machine learning approaches were tested. These included simple 
machine learning models such as support vector machines as well as complex deep learning 
models. To achieve better training models, data was collected carefully and clean high-
resolution images were utilized. It was also made sure every image used is of the resolution 
128 X 128 pixels to sustain integrity. It must be noted that the two deep learning models 
were better at classifying the images as either cracked or non-cracked because of choosing the 
right dataset. In case of a dataset consisting of a high level of imagery with shadows and poor 
lighting would have caused a drastic dip in the accuracy. From an application point of view, 
these studies can be scrutinized further before concluding as to which model can be chosen for 
use as an image processing software for surficial concrete crack detection. However, our study 
strongly suggests the VGG-16 model is better at classifying. Because a VGG-16 network has 
solely been devised for applying in these specific scenarios, it is capable of obtaining the best 
precision. By looking at the results of the 3 models, we can assert that both deep learning 
networks have a far bigger potential of being used for application of image classification as 
they have the liberty of utilizing huge amounts of data for training. Meanwhile, these models 
can be used for any sort of image processing, not limiting to structural engineering alone. 
These models have a massive potential in being predictive softwares for healthcare industry 
where the models could be trained using millions of X-ray, CT scan and MRI based imagery 
and can be something doctors and healthcare professionals could use as a second opinion 
before calling in the judgment. However, in contemporary times, these models have been 
applied to domains such as structural engineering and have given birth to automation in 
fields other than computer science. Further studies need to be done on various other models 
with different layers which can be a cornerstone for capturing much deeper features, such 
as embedding the models with drones to get a real-time inspection of building and bridge 
surfaces. 
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	1 Introduction 
	1 Introduction 
	In the ﬁeld of structural engineering, for monitoring, inspection and maintenance there is a great demand for bringing in automation. In the United States, the federal law enforces routine inspections every two years for both buildings as well as bridges. So it is imperative to make sure that these quality standards are met. This is exactly where image processing comes into the picture. Using deep convolutional neural networks, the images of bridges and buildings taken from unmanned aerial devices can be pr
	The deep learning convolutional neural networks are a type of artiﬁcial neural network which has an input and an output layer, and in between they have various ﬁltering layers, where each layer absorbs speciﬁc detail of an image, like angle, orientation, color, etc. Millions of images are sent through these layers, which will train the image to identify better. There are various ways in which the neural network will identify whether there is the presence of cracks in any given image or not: one is by labeli
	-

	This particular section showcases how our models operate at a high level to generate the required accuracy. As shown in Fig. 3, we see both the training procedure and the testing procedure. The training procedure has been represented by solid demarcations, and the testing procedure has been represented by dotted demarcations. The data that is being used to input in the CNN classiﬁers are a bunch of surface images of concrete buildings, bridges, and decks which have been taken by a DSLR camera. The data incl
	In the images below, we can see how the concrete crack images have been segregated and processed. Most of these images have been cropped out to 128 X 128 pixels resolutions to keep the integrity of the dataset. For a few of the images, only the part of an image that contains the crack has been carefully chosen. The dataset images below show exactly the kind of images that have been chosen for this experiment. 
	Figure
	Figure 1: Raw images to the left, output classiﬁcation to the right. 
	Figure
	Figure 2: Some example images used for training. 
	These 2,255 images are split out and are strategically placed in two folders namely cracked and no-cracked. The cracked folder contains the data (images) that are required for training, 
	These 2,255 images are split out and are strategically placed in two folders namely cracked and no-cracked. The cracked folder contains the data (images) that are required for training, 
	and similarly, the non-cracked folder has all the data (images) required for training. However, in our dataset design, the folders cracked and non-cracked also contain sub-folders that have images for testing and validation. The cracked folder, which is our 1st classiﬁer contains 958 training images and 33 testing images. Similarly, the non-cracked folder contains 1,189 training images and 75 testing images. Now the dataset that has been prepared is given as input to the CNN classiﬁer to segregate the crack

	Figure
	Figure 3: Concrete crack detection ﬂowchart. 
	2 Related Work 
	Before experiments were carried out, various work in the related ﬁeld of structural engineering has been studied and collated. These studies have utilized the applications of diﬀerent deep learning models and they stand as the foundation for all the 3 experiments that have been carried out. Some of these models have used support vector machines, whereas most of these have some form of deep learning neural network tested. Even though some of the experiments seem to yield far lesser accuracy than the accuracy
	A 2016 study utilized deep convolutional neural networks to classify whether cracks are present or not on roads (Zhang, Yang, Zhang, & Zhu, 2016). A relatively smaller dataset was used to perform this study, where the dataset included around 500 images of roads. Here 
	A 2016 study utilized deep convolutional neural networks to classify whether cracks are present or not on roads (Zhang, Yang, Zhang, & Zhu, 2016). A relatively smaller dataset was used to perform this study, where the dataset included around 500 images of roads. Here 
	these images were of size 3264 X 2448 and all these images were taken from a smartphone. The objective of the study was to show whether the given image of the pavement did indeed have any cracks or not. ConvNet was the deep learning model utilized for the entirety of this study. The neural network consisted of considerably fewer layers making it less deep. The architecture had 4 convolutional layers followed by 2 fully connected layers. ReLU is the activation function used for this study just like most othe

	A conference paper published in the year 2018 did a study on the feasibility of using deep learning convolutional neural networks for structural inspection (Dorafshan, Thomas, Coopmans, & Maguire, 2018). Two modes were used for assessing whether a deep learning model can be incorporated for this or not. These two modes are fully trained and transfer learning. This paper mentioned AlexNet as its primary model against which various other models are tested. This architecture is more detailed in structure and m
	A performance-based study involves various deep learning convolutional networks for ¨ 
	detecting cracks in concrete bridges and building (Ozgenel & Sorgu¸c, 2018). This study did not introduce any novel deep learning model, rather ran their dataset on 7 pre-trained neural networks namely AlexNet, ResNet, VGG-16, VGG-19, GoogleNet, ResNet 50, ResNet 101, and ResNet 152. It was observed that for smaller data size, VGG-16 and GoogleNet yielded 96 percent accuracy; however for a bigger dataset of over 14,000 images ResNet 101 and ResNet 152 showed an overwhelming accuracy of 97 percent. 
	Apart from looking at studies involving only neural networks, it is important to look at other aspects of the network build such as edge detectors. A 2019 study was performed solely on using various edge detectors both spatial and frequency based (Dorafshan, Thomas, & Maguire, 2019). The experiment used 4 spatial edge detectors namely Roberts, Prewitt, Sobel, and Laplacian of Gaussian(LOC). Along with these 2, frequency-based edge detectors were also studied which are Butterworth and Gaussian. By far LOG re
	Apart from looking at studies involving only neural networks, it is important to look at other aspects of the network build such as edge detectors. A 2019 study was performed solely on using various edge detectors both spatial and frequency based (Dorafshan, Thomas, & Maguire, 2019). The experiment used 4 spatial edge detectors namely Roberts, Prewitt, Sobel, and Laplacian of Gaussian(LOC). Along with these 2, frequency-based edge detectors were also studied which are Butterworth and Gaussian. By far LOG re
	varying layers to assess the error rate (Krizhevsky, Sutskever, & Hinton, 2012). The study considered images from ImageNet repository, in which around 15000 images were used for training and testing. It was seen that out of the 3 models trained and tested (SIFT, Sparse Coding, and CNN), CNN achieved the least error rate with tier-1 generating a 37.5 percent error rate and tier-5 generating a much lesser error rate of 17 percent. 


	3 Support Vector Machines 
	3 Support Vector Machines 
	Support vector machines are one of the ways in machine learning where images can be classiﬁed and tested along with training accuracy plotted out (Moussa & Hussain, 2011). A support vector machine is also a kind of supervised learning model. In the data preprocessing stage, whichever features need to be used are segregated and are usually mapped on to a higher dimensional space to successfully distinguish the images that have a crack from the non-cracked ones. What SVM does is, it identiﬁes a bunch of point
	-

	Initially we will deﬁne a particular hyper-plane (Gareth, 2010) 
	x : f(x)= xw + w=0 
	0 

	The output that we derive out of this classiﬁer is actually deﬁned by the following only in case where x has already been given 
	G(x)= sign(f(x)) 
	Now let us assume that we have a training dataset of size n, i.e., (x1,y1)....(Xn,Yn) 
	f(xi) >=1, if yi =1 
	f(xi) >= −1, if yi = −1 
	We shall denote the hyper-planes as follows H= x : f(x)=1 and H= x : f(x)= −1. Here when we talk about the margin, it is the space between both of the hyper-planes Hand H. So what the SVM does is, it will identify the hyper-planes with respect to the hyper-plane with the biggest margin. The diagramatic representation of what a hyper-plane looks like is provided in the image below, where we can see how SVM uses the concept of a hyper-plane. In the ﬁgure, we can see two symbols, squares and circles. Here the 
	0 
	1 
	0 
	1

	Figure
	Figure 4: The hyper-plane margin. Two classes of points: circles and squares classiﬁed by hyper-plane wx-b=0. 
	When using SVM as a classiﬁer, it is normal to encounter a linear hyperplane between the two classes. But this particular feature does not need to be manually implemented to have a hyperplane, instead a technique of SVM known as kernel trick can be utilized. So here we have an SVM kernel which essentially takes up a low dimensional input into a higher dimensional space. Then the inseparable problem is transformed into a separable problem. Coming to the implementation aspect of the support vector machine, Py
	4 Deep Learning Models 
	Two diﬀerent deep learning models have been used here to show which could be a better ﬁt in this scenario. Both the deep learning models have the same type of layers and the exact activation functions. In this section, we will see all the layers that have been used to build this CNN architecture. The overall layers consist of an input layer, multiple convolutional layers, max-pooling layers, activation layer, fully connected layers, batch normalization and ﬁnally an output layer. We call any neural network 
	Figure
	Figure 5: Cracked images from the dataset. 
	Figure
	Figure 6: Non-cracked images from the dataset. 
	4.1 Overall Architecture of Both Models 
	In our architecture, we have an input layer which takes in the images of resolution 128 X 128 as input. Here the input images are all RGB images. These images are further generalized to a resolution of 1 X 1 X 96 in the L5 layer. Now, these 96 images as vectors are loaded 
	onto the activation layer (Rectiﬁed Linear Unit), about which explanation is provided in the corresponding section. Post which we have a softmax layer, which is predominantly used to predict if there is crack or not (Cha, Choi, & B¨uy¨uk¨ozt¨urk, 2017). This happens after the 4th convolutional layer. Our architecture also holds batch normalization in layers 1, 3, and 5. All the layers’ functionalities are explained in the following subsections. Below is the breakdown of all the layers and their respective f
	Figure
	Figure 7: Overall architecture of the MatConvNet. 
	Table 1: Dimensions of the layers. 
	Layer 
	Layer 
	Layer 
	Height 
	Width 
	Depth 
	Operator 
	Height 
	Width 
	Depth 
	No 
	Stride 

	Input 
	Input 
	128 
	128 
	3 
	C1 
	20 
	20 
	3 
	24 
	2 

	Layer 1 
	Layer 1 
	64 
	64 
	24 
	P1 
	7 
	7 
	-
	-
	2 

	Layer 2 
	Layer 2 
	32 
	32 
	24 
	C2 
	15 
	15 
	24 
	48
	-

	2 

	Layer 3 
	Layer 3 
	16 
	16 
	48 
	P2 
	4 
	4 
	-
	-
	2 

	Layer 4 
	Layer 4 
	8 
	8 
	48 
	C3 
	10 
	10 
	48 
	96 
	2 

	Layer 5 
	Layer 5 
	1 
	1 
	96 
	ReLU 
	-
	-
	-
	-
	-

	Layer 6 
	Layer 6 
	1 
	1 
	96 
	C4 
	1 
	1 
	96 
	2 
	1 

	Layer 7 
	Layer 7 
	1 
	1 
	2 
	Softmax 
	-
	-
	-
	-
	-

	Layer 8 
	Layer 8 
	1 
	1 
	2 
	-
	-
	-
	-
	-
	-


	In comparison with the above model, a VGG-16 deep learning model is built with similar activation functions and layers. However, this VGG-16 has a diﬀerent number of convolutional, pooling and fully connected layers. Below is a diagrammatic representation of VGG-16 architecture. 
	-

	Figure
	Figure 8: VGG-16 network architecture. 
	As we can see from the architecture model above, there are various convolutional layers. For the ﬁrst two convolutional layers, we have an associated max pool layer. In the table below, we can see the complete setup of how the layers have been arranged, along with the ﬁlter and stride sizes. The output shape feature is how the dimensions of the image are modiﬁed as it approaches and passes through various layers and ﬁlters. It is a typical feature of neural networks where the size of the image is resized in
	Table 2: VGG layers dimensions. 
	Layer (type) 
	Layer (type) 
	Layer (type) 
	Output Shape 
	Param Number 

	conv2d 1 (Conv2D) 
	conv2d 1 (Conv2D) 
	(None, 128, 128, 64) 
	1792 

	conv2d 2 (Conv2D) 
	conv2d 2 (Conv2D) 
	(None, 128, 128, 64) 
	36928 

	max pooling2d 1 (MaxPooling2 
	max pooling2d 1 (MaxPooling2 
	(None, 64, 64, 64) 
	0 

	conv2d 3 (Conv2D) 
	conv2d 3 (Conv2D) 
	(None, 64, 64, 128) 
	73856 

	conv2d 4 (Conv2D) 
	conv2d 4 (Conv2D) 
	(None, 64, 64, 128) 
	147584 

	max pooling2d 2(MaxPooling2 
	max pooling2d 2(MaxPooling2 
	(None, 32, 32, 256) 
	0 

	conv2d 5 (Conv2D) 
	conv2d 5 (Conv2D) 
	(None, 32, 32, 256) 
	295168 

	conv2d 6(Conv2D) 
	conv2d 6(Conv2D) 
	(None, 32, 32, 256) 
	590080 

	conv2d 7 (Conv2D) 
	conv2d 7 (Conv2D) 
	(None, 32, 32, 256) 
	590080 

	max pooling2d 3 (MaxPooling2 
	max pooling2d 3 (MaxPooling2 
	(None, 16, 16, 256) 
	0 

	conv2d 8 (Conv2D) 
	conv2d 8 (Conv2D) 
	(None, 16, 16, 512) 
	1180160 

	conv2d 9 (Conv2D) 
	conv2d 9 (Conv2D) 
	(None, 16, 16, 512) 
	2359808 

	conv2d 10 (Conv2D) 
	conv2d 10 (Conv2D) 
	(None, 16, 16, 512) 
	2359808 

	max pooling2d 4 (MaxPooling2 
	max pooling2d 4 (MaxPooling2 
	(None, 8, 8, 512) 
	0 

	conv2d 11(Conv2D) 
	conv2d 11(Conv2D) 
	(None, 8, 8, 512) 
	2359808 

	conv2d 12 (Conv2D) 
	conv2d 12 (Conv2D) 
	(None, 8, 8, 512) 
	2359808 

	conv2d 13 (Conv2D) 
	conv2d 13 (Conv2D) 
	(None, 8, 8, 512) 
	2359808 

	max pooling2d 5 (MaxPooling2 
	max pooling2d 5 (MaxPooling2 
	(None, 4, 4, 512) 
	0 

	ﬂatten 1 (Flatten) 
	ﬂatten 1 (Flatten) 
	(None, 8192) 
	0 

	dense 1 (Dense) 
	dense 1 (Dense) 
	(None, 4096) 
	33558528 

	dense 2 (Dense) 
	dense 2 (Dense) 
	(None, 4096) 
	16781312 

	dense 3 (Dense) 
	dense 3 (Dense) 
	(None, 2) 
	8194 


	4.2 Convolutional Layer 
	The convolutional layer is responsible for 3 main operations in the architecture: initially, it does a dot product (matrix multiplication) of the given input array and the ﬁlter. Here the weights associated with the ﬁlter are randomly populated. There is the usage of stochastic gradient descent (SDC) for ﬁne-tuning of the training values. We should also make a note that the size of the ﬁlter is the same as that of the size of the sub-array and the size of the ﬁlter is smaller than that of the size of the or
	Figure
	Figure 9: Convolution example. 
	4.3 Pooling Layer 
	4.3 Pooling Layer 
	One of the extremely important layers to include in any convolutional neural network is the pooling layer. The primary purpose of utilizing a pooling layer is to reduce the size of the given input array. This entire process of reducing the overall size of the input array is called downsampling. There are multiple ways of using the pooling layers. In our model, we have used the process of max-pooling, in which the layer takes up the maximum elements from the subarray of the input array. A study (Scherer, M¨u
	Figure
	Figure 10: Pooling example. 
	Figure 10: Pooling example. 


	4.4 ReLU Layer 
	ReLU is the activation layer that we will be using in our CNN model. One more 2010 study (Nair & Hinton, 2010) claimed that whenever we use sigmoid based functions, the saturating nonlinearities will slow down the computation process. Because of this, ReLU is being used as a non-linear function in this particular model. In the ﬁgure below, we could see various non-linear functions. Here ReLU has no bounds when it comes to the value for output; however, the input values here cannot be negative. As ReLU has z
	Figure
	Figure 11: ReLU non-linear functions. 
	Figure 11: ReLU non-linear functions. 


	4.5 Softmax Layer 
	Softmax is one of the ﬁnal layers in any given deep learning architecture. This is primarily utilized for processing the input data. This layer puts out probabilities of outcomes in the form of a vector. However, we need to keep in mind that the softmax layer might get costly when more classes are used. In such a situation, we could always use a concept known as candidate sampling which will not consider all the classes but will limit its computations only to a few speciﬁc classes. It also needs to be kept 


	5 Experiments and Results 
	5 Experiments and Results 
	After pre-processing the dataset and creating a databank that is suitable enough to run on various models, the process of training and testing has been performed. There are a total of 2,255 images. We random split the data such that 10 percent of the data is used for testing and the rest of the 90 percent of the data is used for training. We repeat the process ﬁve times and save the data partitions as ﬁve folds. Cross-validation is performed. Speciﬁcally, the model runs ﬁve times and each time it runs on a 
	5.1 Image Classiﬁcation using Support Vector Machines 
	5.1 Image Classiﬁcation using Support Vector Machines 
	The input data folder consists of two folders which are ‘train’ and ‘test’. Both of these folders contain cracked images along with non-cracked images. There are in total of 227 test images that are used in the following experiment. Python is the choice of the programming language used for this experiment along with sci-kit learn as the library used for the process of classiﬁcation. Initially, the Python program is written in Jupyter Notebook. Various libraries have been imported for making sure the SVM is 
	from pathlib import Path 
	import matplotlib .pyplot as plt 
	import numpy as np 
	%matplotlib notebook 
	from sklearn import svm, metrics , datasets 
	from sklearn .utils import Bunch 
	from sklearn .model_selection import GridSearchCV , train_test_split 
	from skimage .io import imread 
	from skimage .transform import resize 
	Above are all the libraries that have been imported to implement this support vector machine model. matplotlib is a library used to plot and it also provides an object-oriented API for embedding these plots. numpy is the library required for doing any numeric calculations, containing multidimensional arrays and matrix data structures. sklearn also called sci-kit learn is the core library in this experiment. Its functionality includes linear and logistic regression along with classiﬁcation for which it predo
	-

	def load_image_files(container_path , dimension =(64, 64)): 
	Above is the data loading function, which takes in images ﬁles as input and stores them into a container. There are sub-folders within the input folder, where each sub-folder is treated as an individual class. 
	images = [] flat_data = [] target = [] 
	images = [] flat_data = [] target = [] 
	for i, direc in enumerate (folders): 

	for file in direc .iterdir() : 
	if (str (file ). endswith(".jpg ")): 
	img = imread( file ) 
	img_resized = resize(img, dimension , anti_aliasing =True , 
	mode =’reflect ’) 
	flat_data .append (img_resized .flatten ()) 
	images .append (img_resized) 
	target .append (i) flat_data = np. array (flat_data) target = np. array (target) images = np. array (images) 
	Once the data has been loaded, images and target arrays are created and the folders are enumerated till every ‘.jpg’ has been loaded into the array. Now these array elements are resized and ﬂattened. Once the above processes are performed, the NumPy array contents are copied back to the target and images arrays. Then a bunch is returned which contains the ﬂatten images NumPy array along with the image classiﬁcation dataset. 
	Here the split function is not used for splitting the data into train and test sets. Data is already divided into train and test folders. As a split function also does random split, it has been avoided as the dataset has to use a speciﬁc number of images as its train and test sets. 
	param_grid = [ {’C’: [* np. arange (0.1, 1.1, 0.1)], ’kernel ’: [’linear ’]} , {’C’: [* np. arange (0.1, 1.1, 0.1)], ’gamma ’: [0. 0001 ], ’kernel ’: [’rbf ’]} 
	, 
	] svc = svm .SVC() clf = GridSearchCV(svc, param_grid , cv =5, n_jobs =4, verbose =5) clf .fit(image_dataset_train .data , image_dataset_train .target) 
	The above code snippet shows the parameter optimization used for the experiment. Grid search is also performed speciﬁcally for hyperparameter tuning. Cross-validation is also performed (cv=5), which means the model runs 5 times and every time it runs, its accuracy is recorded. After the code runs for 5 times, all the 5 accuracies are summed up and averaged out. The average value obtained would be the cross-validated accuracy which could be considered as the actual accuracy of the model. 
	y_pred = classifier .predict(image_dataset_test .data) 
	This is the ﬁnal step in the SVM classiﬁer, where the test dataset is run over the classiﬁer and its testing accuracy is predicted. With the execution of this method, the respective training and testing accuracies are printed out. After the process of cross validation, the SVM classiﬁer was able to generate an accuracy of about 82 percent on the validation set. Below is the screenshot of one of the runs. 

	5.2 Image Classiﬁcation using MatConvNet 
	5.2 Image Classiﬁcation using MatConvNet 
	After the ﬁrst experiment performed using the SVM classiﬁer, the second experiment involves the usage of deep learning to classify the dataset. Here a variant of VGG-16 has been used. 
	Table 3: Cross validation results for training and testing accuracy of SVM. 
	Fold 
	Fold 
	Fold 
	Linear SVM Training Accuracy (%) 
	Linear SVM Testing Accuracy(%) 

	1 
	1 
	100 
	85.84 

	2 
	2 
	100 
	84.07 

	3 
	3 
	100 
	85.40 

	4 
	4 
	100 
	75.66 

	5 
	5 
	100 
	79.20 

	Average 
	Average 
	100 
	82.03 


	This deep learning neural network consists of 4 convolutional layers L1, L3, L5, and L7, two pooling layers L2 and L4, a ReLU layer L6 and the ﬁnal softmax layer L8. Note that batch normalization happens at all the convolutional layers. The same data that was used in the SVM classiﬁer has been used for training and validation. Here for the training, we use 2,028 images and for validation, we use 227 images. Out of the entire dataset, 10 percent of the images are used for the process of validation. 
	import numpy as np import os import pickle import tensorflow as tf import time from datetime import timedelta import cv2,sys from pathlib import Path 
	As observed above, Tensorﬂow is imported, as it serves as our primary deep learning framework throughout this experiment. Along with that, we utilize the basic NumPy for numerical calculations and also for the creation of NumPy arrays. DateTime and time delta are used to keep track of how long the model takes to train the network completely. It might be surprising to see a pickle library imported in the above code snippet, the reason being creating a ‘.pkl’ cache ﬁle. Before starting the training process, m
	Once the necessary libraries have been successfully imported, the next step performed here is to specify the input directory from where the images need to load. The entire path of the input directory needs to be provided. Similarly, an output directory also needs to be speciﬁed along with its path where the TensorFlow model can be saved. Part of this experiment also includes the creation of a cache-wrapper function. As explained in the previous section, this function is solely responsible for identifying if
	Once the necessary libraries have been successfully imported, the next step performed here is to specify the input directory from where the images need to load. The entire path of the input directory needs to be provided. Similarly, an output directory also needs to be speciﬁed along with its path where the TensorFlow model can be saved. Part of this experiment also includes the creation of a cache-wrapper function. As explained in the previous section, this function is solely responsible for identifying if
	object. The purpose of this is to make sure that the order in which the ﬁlenames appear will be consistent every time the data is loaded. 

	def one_hot_encoded(class_numbers , num_classes =None ): 
	One hot encoding function is used for the generation of an integer array. This particular function takes in two values which are class numbers and number of classes. The number of classes functionality is unique, where depending on the number of folders, the number of classes is created. For example, in our experiment, we have two folders namely ‘cracked’ and ‘non-cracked’. So here the method iterates over the folders and every folder is treated as a class. 
	A dataset method is speciﬁed which takes in the input data. Depending on the structure of the directory, the code detects how many classes are there based on the previous code snippet where we speciﬁed the number of classes. It is necessary to stick to the following directory structure, especially for this experiment as the data has been arranged in a particular way. If the structure of the directory is changed, it is important to make necessary changes to the code which takes in the input data, as director
	-

	The initialization of various layers of the neural network would be the next few steps that are undertaken. The ﬁrst convolution layer is initiated which speciﬁes the input (the previous layer), number of input channels, size of the ﬁlter which is the width and height of the ﬁlter, along with the number of ﬁlters. 
	def new_conv_layer( input ,num_input_channels ,filter_size ,num_filters): 
	Max pool layers are initiated with layer details such as layer size, layer ksize and the number of ﬁlters in the layer, and strides. 
	def max_pool(layer ,ksize ,strides): 
	def new_fc_layer( input ,num_inputs ,num_outputs ,use_relu =True ): 
	Post creation of all layers, the input data is given to the neural network to train for a speciﬁc number of iterations. Here 1,500 iterations are used. The individual batch size is 64 images. 
	model .optimize(num_iterations) 
	As opposed to the SVM classiﬁer, this deep learning model produced a staggering 92 percent accuracy. The accuracy was conﬁrmed after a cross-validation procedure where the model is trained several times and averaged out. 
	Figure
	Figure 12: Accuracy of image classiﬁcation using MatConvNet. 
	Figure 12: Accuracy of image classiﬁcation using MatConvNet. 


	5.3 Image Classiﬁcation using VGG-16 
	5.3 Image Classiﬁcation using VGG-16 
	A critical requirement of these studies is to draw in a comparison between various machine learning models. As explained and shown in the previous section where the data was run over a MatConvNet, similarly the data is run over a VGG-16 network. Here it is to be noted that we have not used transfer learning, but instead have opted to use it as a fully trained network. The VGG-16 model has been built from scratch with a deﬁnitive layer set. Here tweaking is done to swiftly be able to run our dataset over the
	import keras , os from keras .models import Sequential from keras .layers import Dense , Conv2D , MaxPool2D , Flatten from keras .preprocessing .image import ImageDataGenerator import numpy as np from keras .optimizers import Adam from keras .callbacks import ModelCheckpoint , EarlyStopping import matplotlib .pyplot as plt 
	Instead of using TensorFlow, we use a TensorFlow wrapper Keras as the primary framework. Sequential is used to run the layers in a speciﬁc order. Numpy is used for mathematical calculations and array implementations. Here early stopping is utilized to halt the training once the model reaches the required accuracy and does not go beyond that. 
	-

	def vgg16model() : 
	model = Sequential() 
	model .add(Conv2D(input_shape =(128, 128, 3), filters =64, kernel_size =(3 
	, 3), padding ="same ", activation = "relu ")) 
	model .add(Conv2D(filters =64, kernel_size =(3, 3), padding ="same ", 
	activation ="relu ")) 
	As observed in the above code snippet, there is a calling of sequential function, which dictates how the below-initiated layers are executed in order. Here a convolutional layer is created with input size the same as that of our images. Using 64 ﬁlters and ReLU as the activation layer. Similarly, multiple convolutional and max-pooling layers are created. It has to be noted that all of the convolutional layers use the only ReLU as the activation function. 
	model = vgg16model() opt = Adam(lr =1e -4) 
	As we can see above, one of the very important aspects of any neural network would be the learning rate. This dictates how fast or slow, the model learns from the given input data. The slower the learning rate, the better trained the neural network will be, provided the data is clean enough. Here we are using an ‘adam optimizer’ for the learning function. Here the learning rate applies to individual iterations. 
	Post-training, it was seen that the VGG-16 model has a better accuracy at classiﬁcation. It was observed that just in 5 epochs the VG-16 model was able to achieve an accuracy of 
	93.3 percent accuracy. The accuracy increased in comparison with the MatConvNet. On a similar dataset that was run over SVM, MatConvNet, and VGG-16, VGG-16 came out as a better model to use for image classiﬁcation. 
	In the table below, the complete results of the 3 experiments are given. All these values have been veriﬁed using the N-fold cross-validation approach. All the models are trained 5 times and the resultant accuracies have been averaged out. The table also lists the dedicated time taken by individual models to reach maximum training accuracy. The models are not locally run in the machine but have been run over a dedicated server. It is seen that, even though VGG-16 has better accuracy, it takes more time than
	Table 4: Model accuracy and time to reach max training accuracy. 
	Model 
	Model 
	Model 
	Test Accuracy(%) 
	Training Time(min) 
	Parameters 

	SVM 
	SVM 
	82.03 
	2.1 
	16384 

	MatConvNet 
	MatConvNet 
	92.38 
	4.41 
	677,643 

	VGG-16 
	VGG-16 
	93.31 
	16.8 
	65,062,722 





	6 Conclusion 
	6 Conclusion 
	In this study, various machine learning approaches were tested. These included simple machine learning models such as support vector machines as well as complex deep learning models. To achieve better training models, data was collected carefully and clean high-resolution images were utilized. It was also made sure every image used is of the resolution 128 X 128 pixels to sustain integrity. It must be noted that the two deep learning models were better at classifying the images as either cracked or non-crac
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