
Deep Learning Based Multi-Sensor Integration

for Pavement Crack Detection

by Dr. Mingxuan Sun and Dr. Xiangwei Zhou

School of Electrical Engineering and Computer Science

Louisiana State University and

Agricultural and Mechanical College

Final Report

LTRC Project No. 20-1TIRE

Conducted for

Louisiana Transportation Research Center

The contents of this report reflect the views of the authors/principal investigators who are
responsible for the facts and the accuracy of the data presented herein. The contents do not
necessarily reflect the views or policies of the Louisiana Department of Transportation and
Development or the Louisiana Transportation Research Center. This report does not consti-
tute a standard, specification, or regulation.

July 2020

1

Abstract

Crack detection using surficial images has been an important task in structural engineering.

Recently, deep neural networks are being utilized extensively for image classification and

pattern recognition. Deep neural networks are powerful tools that automatically extract

different levels of image features and generate accurate predictions. This study investigates

crack image classification using different deep neural network models such as variations of

VGG16 along with traditional support vector machines (SVM). We compare the results

of these models from both prediction accuracy and computational efficiency. The dataset

utilized for this study consists of 2,255 concrete surface images with and without cracks. In

our study, we find that particular deep neural network models perform better than traditional

SVM in crack detection. The best experiment using a variation of VGG-16 achieves higher

accuracy, which demonstrates the potential of deep learning models.

2

Acknowledgments

We would like to thank Mr. Abhishek Huddar for his great contribution to this project.

3

Contents

1 Introduction . 6

2 Related Work . 8

3 Support Vector Machines . 10

4 Deep Learning Models . 11

4.1 Overall Architecture of Both Models 12

4.2 Convolutional Layer . 15

4.3 Pooling Layer . 16

4.4 ReLU Layer . 17

4.5 Softmax Layer . 17

5 Experiments and Results . 18

5.1 Image Classification using Support Vector Machines 18

5.2 Image Classification using MatConvNet 19

5.3 Image Classification using VGG-16 22

6 Conclusion . 24

References 25

4

List of Figures

1 Raw images to the left, output classification to the right. 7

2 Some example images used for training. 7

3 Concrete crack detection flowchart. 8

4 The hyper-plane margin. Two classes of points: circles and squares classified

by hyper-plane wx-b=0. 11

5 Cracked images from the dataset. 12

6 Non-cracked images from the dataset. 12

7 Overall architecture of the MatConvNet. 13

8 VGG-16 network architecture. 14

9 Convolution example. 16

10 Pooling example. 16

11 ReLU non-linear functions. 17

12 Accuracy of image classification using MatConvNet. 22

5

1 Introduction

In the field of structural engineering, for monitoring, inspection and maintenance there is
a great demand for bringing in automation. In the United States, the federal law enforces
routine inspections every two years for both buildings as well as bridges. So it is imperative
to make sure that these quality standards are met. This is exactly where image processing
comes into the picture. Using deep convolutional neural networks, the images of bridges
and buildings taken from unmanned aerial devices can be processed at a much faster rate
in identification and detection of whether cracks are visible over the surfaces, which will, in
turn, help the structural engineers to make necessary fixes to the structure by making sure
the strength of the structure is maintained.

The deep learning convolutional neural networks are a type of artificial neural network
which has an input and an output layer, and in between they have various filtering layers,
where each layer absorbs specific detail of an image, like angle, orientation, color, etc. Mil-
lions of images are sent through these layers, which will train the image to identify better.
There are various ways in which the neural network will identify whether there is the presence
of cracks in any given image or not: one is by labeling the images cracked and non-cracked,
the second method is to do classification, and the third method would be a process called
localization (where the exact area of the crack is located). In this project, we use the method
of classification to classify whether the images have cracks or not. Here the efficiency of our
network identifying the images depends on various parameters, such as the way the layers
have been arranged along with how big the dataset to be trained is.

This particular section showcases how our models operate at a high level to generate
the required accuracy. As shown in Fig. 3, we see both the training procedure and the
testing procedure. The training procedure has been represented by solid demarcations, and
the testing procedure has been represented by dotted demarcations. The data that is being
used to input in the CNN classifiers are a bunch of surface images of concrete buildings,
bridges, and decks which have been taken by a DSLR camera. The data include images
of all kinds; for example, there are images which have shadows in it, and there are some
images which have very poor visibility of concrete cracks which might ultimately provide
false positive values. These kinds of images have been deliberately included in the training
and the testing set. In our dataset, any image which can be differentiated from a normal
human eye as cracked/non-cracked has only been utilized. In totality, our dataset has 2,255
raw images of resolution 128 X 128.

In the images below, we can see how the concrete crack images have been segregated and
processed. Most of these images have been cropped out to 128 X 128 pixels resolutions to
keep the integrity of the dataset. For a few of the images, only the part of an image that
contains the crack has been carefully chosen. The dataset images below show exactly the
kind of images that have been chosen for this experiment.

6

Cracks No cracks (Background)

Figure 1: Raw images to the left, output classification to the right.

Figure 2: Some example images used for training.

These 2,255 images are split out and are strategically placed in two folders namely cracked
and no- cracked. The cracked folder contains the data (images) that are required for training,

7

TrnlJOlng

Trained CNN classlDer

Rcpo11lng

_ , P1·eprocesslog
• - + : Trnining

: Testing

and similarly, the non-cracked folder has all the data (images) required for training. However,
in our dataset design, the folders cracked and non-cracked also contain sub-folders that have
images for testing and validation. The cracked folder, which is our 1st classifier contains
958 training images and 33 testing images. Similarly, the non-cracked folder contains 1,189
training images and 75 testing images. Now the dataset that has been prepared is given as
input to the CNN classifier to segregate the cracked images from the no-cracked ones. To
summarize this proposed methodology, we have raw images as training data from which a
dataset has been prepared. This is further split into training and testing/validation data.
This split is trained on the CNN classifier and post-training, raw images are given as an
input to the CNN classifier and the accuracy of the CNN is calculated.

Figure 3: Concrete crack detection flowchart.

2 Related Work

Before experiments were carried out, various work in the related field of structural engineering
has been studied and collated. These studies have utilized the applications of different deep
learning models and they stand as the foundation for all the 3 experiments that have been
carried out. Some of these models have used support vector machines, whereas most of
these have some form of deep learning neural network tested. Even though some of the
experiments seem to yield far lesser accuracy than the accuracy achieved in our model,
it needs to be noted that most of these studies are applications in nature and have done
comparative studies to pick the best neural network for the respective datasets that were
utilized. Almost all of the studies have used concrete crack images taken from buildings and
bridges. A few of the studies have used road pavement cracks for classification, however,
from an implementation point of view, there is a necessity to go through these studies as
the models used in our experiments are intended to produce higher accuracy and generate
as few false positives as possible.

A 2016 study utilized deep convolutional neural networks to classify whether cracks are
present or not on roads (Zhang, Yang, Zhang, & Zhu, 2016). A relatively smaller dataset
was used to perform this study, where the dataset included around 500 images of roads. Here

8

these images were of size 3264 X 2448 and all these images were taken from a smartphone.
The objective of the study was to show whether the given image of the pavement did indeed
have any cracks or not. ConvNet was the deep learning model utilized for the entirety of
this study. The neural network consisted of considerably fewer layers making it less deep.
The architecture had 4 convolutional layers followed by 2 fully connected layers. ReLU is
the activation function used for this study just like most others. Also, stochastic gradient
descent (SGD) was used for training where individual batch was consisted of 48 images and
used 20 epochs. Not just a neural network study, but also an SVM was used for comparison
and to show the superiority of using deep learning. It was seen post experimentation that
the deep learning ConvNet model reached a precision of 0.86 and SVM showed a lower side
of precision with 0.81. The recall was drastically higher for ConvNet at 0.93; however, SVM
failed to provide a higher recall and reached the maximum value of 0.67. Overall the ConvNet
achieved an F1 score of 0.89 coming out as the better model for accurate classification.

A conference paper published in the year 2018 did a study on the feasibility of using
deep learning convolutional neural networks for structural inspection (Dorafshan, Thomas,
Coopmans, & Maguire, 2018). Two modes were used for assessing whether a deep learning
model can be incorporated for this or not. These two modes are fully trained and transfer
learning. This paper mentioned AlexNet as its primary model against which various other
models are tested. This architecture is more detailed in structure and much deeper than
the ConvNet architecture. It consists of in total 5 convolutional layers, followed by 3 fully
connected layers. ReLU is the activation layer used, along with a softmax and a classification
layer. The study was done on 3 sets of data, which contained images taken from 3 cameras
with varying resolutions. Data collected from the Nikon camera (16 MP) were of resolution
4068 X 3456. Secondly, they used a GoPro (12 MP) with the resolution of images being
4000 X 3000 and finally DJI Mavic camera of the same resolution and dimensions as that
of GoPro. Overall it was seen that the dataset which consisted of higher resolution images
yielded better testing accuracy, where the FT and TL stood at 79 percent and 89 percent.
It was concluded that in using deep learning models, clarity and resolution of datasets made
more impact rather than any particular model.

A performance-based study involves various deep learning convolutional networks for
¨ detecting cracks in concrete bridges and building (Ozgenel & Sorguç, 2018). This study did

not introduce any novel deep learning model, rather ran their dataset on 7 pre-trained neural
networks namely AlexNet, ResNet, VGG-16, VGG-19, GoogleNet, ResNet 50, ResNet 101,
and ResNet 152. It was observed that for smaller data size, VGG-16 and GoogleNet yielded
96 percent accuracy; however for a bigger dataset of over 14,000 images ResNet 101 and
ResNet 152 showed an overwhelming accuracy of 97 percent.

Apart from looking at studies involving only neural networks, it is important to look
at other aspects of the network build such as edge detectors. A 2019 study was performed
solely on using various edge detectors both spatial and frequency based (Dorafshan, Thomas,
& Maguire, 2019). The experiment used 4 spatial edge detectors namely Roberts, Prewitt,
Sobel, and Laplacian of Gaussian(LOC). Along with these 2, frequency-based edge detectors
were also studied which are Butterworth and Gaussian. By far LOG resulted in an accuracy
of 92 percent which is much higher than any other edge detector. Furthermore, an interesting
study was also taken into consideration before moving ahead with the experiments. This
study was done in the year 2012, which considered a deep learning neural network with

9

varying layers to assess the error rate (Krizhevsky, Sutskever, & Hinton, 2012). The study
considered images from ImageNet repository, in which around 15000 images were used for
training and testing. It was seen that out of the 3 models trained and tested (SIFT, Sparse
Coding, and CNN), CNN achieved the least error rate with tier-1 generating a 37.5 percent
error rate and tier-5 generating a much lesser error rate of 17 percent.

3 Support Vector Machines

Support vector machines are one of the ways in machine learning where images can be
classified and tested along with training accuracy plotted out (Moussa & Hussain, 2011).
A support vector machine is also a kind of supervised learning model. In the data pre-
processing stage, whichever features need to be used are segregated and are usually mapped
on to a higher dimensional space to successfully distinguish the images that have a crack
from the non-cracked ones. What SVM does is, it identifies a bunch of points in every class
which is closer to the other classes. Once it does so, the SVM calculates a hyper-plane that
distinguishes between the classes. This hyper-plane that is plotted out is usually called the
maximum-margin hyper-plane and it is what makes the SVM scalable and robust. After the
process of training is performed by the SVM, the only part left would be the testing. In
testing, all the SVM does is to try to accurately categorize which class the images belong to,
either cracked or non-cracked. The mathematical implementation of support vector machines
is given below.

Initially we will define a particular hyper-plane (Gareth, 2010)

x : f(x) = xw + w0 = 0

The output that we derive out of this classifier is actually defined by the following only in
case where x has already been given

G(x) = sign(f(x))

Now let us assume that we have a training dataset of size n, i.e., (x1,y1)....(Xn,Yn)

f(xi) >= 1, if yi = 1

f(xi) >= −1, if yi = −1

We shall denote the hyper-planes as follows H0 = x : f(x) = 1 and H1 = x : f(x) = −1.
Here when we talk about the margin, it is the space between both of the hyper-planes H0

and H1. So what the SVM does is, it will identify the hyper-planes with respect to the
hyper-plane with the biggest margin. The diagramatic representation of what a hyper-plane
looks like is provided in the image below, where we can see how SVM uses the concept of
a hyper-plane. In the figure, we can see two symbols, squares and circles. Here the squares
represent class 1 and the circles represent class 2. Here both of these classes are classified
by the hyper-plane function : wx-b=0.

10

,
..... ✓

q ✓ ·-~~
• • ff~,,.,,.

✓

q<::) ·-~

•
~~'Q · ..

• -~ ·,

✓

//'~,,.,,.

N
• ✓

~-<;>,'

><
•

~,/

✓

,

✓-✓ , , ,
■

■
, ✓ ■ ,

■
,

✓ ■ ■
■

x1

Figure 4: The hyper-plane margin. Two classes of points: circles and squares classified by
hyper-plane wx-b=0.

When using SVM as a classifier, it is normal to encounter a linear hyperplane between
the two classes. But this particular feature does not need to be manually implemented to
have a hyperplane, instead a technique of SVM known as kernel trick can be utilized. So
here we have an SVM kernel which essentially takes up a low dimensional input into a higher
dimensional space. Then the inseparable problem is transformed into a separable problem.
Coming to the implementation aspect of the support vector machine, Python provides an
built-in library known as sci-kit learn. So in brief, the sci-kit library needs to be implemented
first, followed by the creation of the object, performing all the necessary model fitting and
in the end prediction is done. In essence, an SVM is an algorithm primarily utilized for the
process of classification.

4 Deep Learning Models

Two different deep learning models have been used here to show which could be a better fit
in this scenario. Both the deep learning models have the same type of layers and the exact
activation functions. In this section, we will see all the layers that have been used to build
this CNN architecture. The overall layers consist of an input layer, multiple convolutional
layers, max-pooling layers, activation layer, fully connected layers, batch normalization and
finally an output layer. We call any neural network as a deep convolutional neural network
only when the particular network is composed of multiple layers. Before proceeding with
the explanation for the different deep learning models used in the experiments, let us see
the kind of images used for our dataset. Below are the examples of cracked and non-cracked
data used in the experiments.

11

Figure 5: Cracked images from the dataset.

Figure 6: Non-cracked images from the dataset.

4.1 Overall Architecture of Both Models

In our architecture, we have an input layer which takes in the images of resolution 128 X 128
as input. Here the input images are all RGB images. These images are further generalized
to a resolution of 1 X 1 X 96 in the L5 layer. Now, these 96 images as vectors are loaded

12

1st ~ --}----/' C4

1 ~ ' '
I I ,,, r--,
I LI\,, I I

I ~"-~ I
I I \ \ -~ :---+
: ;:, : \\f : j:
: -: : I I

L5-B 1 <:<! 1 1~ 1 : o : t I ,' I t I t.l) I

95 I ~1--v-'____j I

_J~ ~.· ,J\..../, r-1 I 1 , I I

Dropout : L___f'.J~ L--J
c __ ,r--"\..J L7

Crack

Intact

L8

L6

onto the activation layer (Rectified Linear Unit), about which explanation is provided in the
corresponding section. Post which we have a softmax layer, which is predominantly used
to predict if there is crack or not (Cha, Choi, & Büyüköztürk, 2017). This happens after
the 4th convolutional layer. Our architecture also holds batch normalization in layers 1, 3,
and 5. All the layers’ functionalities are explained in the following subsections. Below is the
breakdown of all the layers and their respective features in Table 1.

Figure 7: Overall architecture of the MatConvNet.

Table 1: Dimensions of the layers.

Layer Height Width Depth Operator Height Width Depth No Stride
Input 128 128 3 C1 20 20 3 24 2
Layer 1 64 64 24 P1 7 7 - - 2
Layer 2 32 32 24 C2 15 15 24 48- 2
Layer 3 16 16 48 P2 4 4 - - 2
Layer 4 8 8 48 C3 10 10 48 96 2
Layer 5 1 1 96 ReLU - - - - -
Layer 6 1 1 96 C4 1 1 96 2 1
Layer 7 1 1 2 Softmax - - - - -
Layer 8 1 1 2 - - - - - -

In comparison with the above model, a VGG-16 deep learning model is built with similar
activation functions and layers. However, this VGG-16 has a different number of convo-
lutional, pooling and fully connected layers. Below is a diagrammatic representation of
VGG-16 architecture.

13

224 X 224 X 3 224 X 224 X 64

7 X 7 X 512

B convolution+ Re LU

B max pooling
C: fully nected + Re LU
1:._y softmax

1 X 1 X 4096 1 X 1 X 1000

Figure 8: VGG-16 network architecture.

As we can see from the architecture model above, there are various convolutional layers.
For the first two convolutional layers, we have an associated max pool layer. In the table
below, we can see the complete setup of how the layers have been arranged, along with
the filter and stride sizes. The output shape feature is how the dimensions of the image
are modified as it approaches and passes through various layers and filters. It is a typical
feature of neural networks where the size of the image is resized in every layer to extract
the most of the features, and alongside the number of filters keeps on increasing. At the
end of the network, we have 3 dense layers. All the 3 dense layers use ReLU activation.
Creating the softmax layer would be the final one in the neural network before it could be
trained. VGG-16 is one of the most complex and huge neural networks with over 138 million
parameters.

14

Table 2: VGG layers dimensions.

Layer (type) Output Shape Param Number
conv2d 1 (Conv2D) (None, 128, 128, 64) 1792
conv2d 2 (Conv2D) (None, 128, 128, 64) 36928

max pooling2d 1 (MaxPooling2 (None, 64, 64, 64) 0
conv2d 3 (Conv2D) (None, 64, 64, 128) 73856
conv2d 4 (Conv2D) (None, 64, 64, 128) 147584

max pooling2d 2(MaxPooling2 (None, 32, 32, 256) 0
conv2d 5 (Conv2D) (None, 32, 32, 256) 295168
conv2d 6(Conv2D) (None, 32, 32, 256) 590080
conv2d 7 (Conv2D) (None, 32, 32, 256) 590080

max pooling2d 3 (MaxPooling2 (None, 16, 16, 256) 0
conv2d 8 (Conv2D) (None, 16, 16, 512) 1180160
conv2d 9 (Conv2D) (None, 16, 16, 512) 2359808
conv2d 10 (Conv2D) (None, 16, 16, 512) 2359808

max pooling2d 4 (MaxPooling2 (None, 8, 8, 512) 0
conv2d 11(Conv2D) (None, 8, 8, 512) 2359808
conv2d 12 (Conv2D) (None, 8, 8, 512) 2359808
conv2d 13 (Conv2D) (None, 8, 8, 512) 2359808

max pooling2d 5 (MaxPooling2 (None, 4, 4, 512) 0
flatten 1 (Flatten) (None, 8192) 0
dense 1 (Dense) (None, 4096) 33558528
dense 2 (Dense) (None, 4096) 16781312
dense 3 (Dense) (None, 2) 8194

4.2 Convolutional Layer

The convolutional layer is responsible for 3 main operations in the architecture: initially, it
does a dot product (matrix multiplication) of the given input array and the filter. Here the
weights associated with the filter are randomly populated. There is the usage of stochastic
gradient descent (SDC) for fine-tuning of the training values. We should also make a note
that the size of the filter is the same as that of the size of the sub-array and the size of the
filter is smaller than that of the size of the original input array. After we have done with
the dot product, the values obtained from the dot product are added along with the bias.
The primary reason for using convolutional layers is to reduce the amount of computation
cost and also to reduce the size of the input data. Below is the image showing how the dot
product generated is summed. This is specifically what happens in the convolutional layer.

15

J

1 j 0

3 I -1
I

0 1 0

Input (6X6)

0

-2

0

.........
4 1_4 3

I
0 I 1 l

-1 I 3 1

-2 0 3 1 0

0 5 1 -1 0 2

0 0 0 2 2 1

r Subarray

1 0 0

3 -1 -2

0 0 0

Subarray ,-----
1 0 0 4 I
I I

-1 -2 0 I
I
LO_ Q_ ..:1~

'-

Bias
~

Receptive field ~ I + 2

-1 0 1

Q9 1 - 1 l

0 0 -2

Output (4X4)
II 11

=n==============o=

II
II

-9 - 1

-4 7 0

1 4 3 2

11 -1 6 1 -l
II
II I :c::::::::::::::c:
II II

Output size = CT - R) / S + l , I = Input size, R = Receptive field size, S = Stride size; (6-3)/ 1+ I =4

Input (7X7) Output (3 X3)
Stride=2

~ 3
~-

Max[]➔ 1 0 i 0 4 - 4 1 3 2 1 0 0 4 3

-1 ' -2
I

3 -1 -2 3 5 3 3 3 0 1 I 1 -1
I

3 I 0 0 0 5 2 3 0 0 I 0 - 1 1 1 -- - $ - 1 -2 0 3 1 0 0 _;?. 0 5 1 - 1 0 2 -1 Mean[
~ 0- 4 - _;,

]➔ I
0 0 0 2 2 1 0 1-2 0 1 I 0.1 0.3 0.7 0 .8

I
3 0 -1 0 -3 1 3 LO_-!_ 3 ~ 0.9 0.0 0.6

Output size = (I - P) / S + I , I = Input size, P = Pooling size, S = Stride size; (7-3)/2+ 1= 3

Figure 9: Convolution example.

4.3 Pooling Layer

One of the extremely important layers to include in any convolutional neural network is the
pooling layer. The primary purpose of utilizing a pooling layer is to reduce the size of the
given input array. This entire process of reducing the overall size of the input array is called
downsampling. There are multiple ways of using the pooling layers. In our model, we have
used the process of max-pooling, in which the layer takes up the maximum elements from
the subarray of the input array. A study (Scherer, Müller, & Behnke, 2010) showed that
utilizing the process of max-pooling is the best when using images as our datasets. As a
reference from this study, for this project, all the pooling layers that have been chosen are
max-pooling layers. Below is a diagrammatic representation of the max-pooling layer.

Figure 10: Pooling example.

16

- ReLU (y=max(O,x))
• _. y =(l +e-x)" l
,._. _. y=tanh(x)

-= C. -= 0
--- ---~-------

-3 -2 -1 ,,

- ·· · 1 •-·-·-·•·-·-· -
Input

4.4 ReLU Layer

ReLU is the activation layer that we will be using in our CNN model. One more 2010 study
(Nair & Hinton, 2010) claimed that whenever we use sigmoid based functions, the saturating
nonlinearities will slow down the computation process. Because of this, ReLU is being used
as a non-linear function in this particular model. In the figure below, we could see various
non-linear functions. Here ReLU has no bounds when it comes to the value for output;
however, the input values here cannot be negative. As ReLU has zeroes and ones (0,1) as
its gradients, it avoids a lot of complex sigmoid functions and hence makes the computation
much easier and faster assisting in providing superior accuracy.

Figure 11: ReLU non-linear functions.

4.5 Softmax Layer

Softmax is one of the final layers in any given deep learning architecture. This is primarily
utilized for processing the input data. This layer puts out probabilities of outcomes in the
form of a vector. However, we need to keep in mind that the softmax layer might get costly
when more classes are used. In such a situation, we could always use a concept known as
candidate sampling which will not consider all the classes but will limit its computations
only to a few specific classes. It also needs to be kept in mind that a softmax layer usually
just considers 1 member per given class and in the situations where an object belonging to
multiple numbers of classes, this will not work with the softmax layer. If we encounter such
a situation, we could always use logistic regression.

17

5 Experiments and Results

After pre-processing the dataset and creating a databank that is suitable enough to run
on various models, the process of training and testing has been performed. There are a
total of 2,255 images. We random split the data such that 10 percent of the data is used
for testing and the rest of the 90 percent of the data is used for training. We repeat the
process five times and save the data partitions as five folds. Cross-validation is performed.
Specifically, the model runs five times and each time it runs on a different data fold. The
model accuracy is averaged over five folds. All three different models run on the same data
partitions. The first model is a Support Vector Machine (SVM), the second one and the
third one are variants of VGG-16 models. Here the variant means, different activation layers
and the different number of convolutional layers. All the 3 models have been implemented
using Python.

5.1 Image Classification using Support Vector Machines

The input data folder consists of two folders which are ‘train’ and ‘test’. Both of these
folders contain cracked images along with non-cracked images. There are in total of 227 test
images that are used in the following experiment. Python is the choice of the programming
language used for this experiment along with sci-kit learn as the library used for the process of
classification. Initially, the Python program is written in Jupyter Notebook. Various libraries
have been imported for making sure the SVM is implemented correctly and satisfactorily.

from pathlib import Path
import matplotlib .pyplot as plt
import numpy as np
%matplotlib notebook
from sklearn import svm , metrics , datasets
from sklearn .utils import Bunch
from sklearn .model_selection import GridSearchCV , train_test_split
from skimage .io import imread
from skimage .transform import resize

Above are all the libraries that have been imported to implement this support vector ma-
chine model. matplotlib is a library used to plot and it also provides an object-oriented API
for embedding these plots. numpy is the library required for doing any numeric calculations,
containing multidimensional arrays and matrix data structures. sklearn also called sci-kit
learn is the core library in this experiment. Its functionality includes linear and logistic
regression along with classification for which it predominantly uses the kth nearest neighbor
algorithm.

def load_image_files(container_path , dimension =(64 , 64)):

Above is the data loading function, which takes in images files as input and stores them
into a container. There are sub-folders within the input folder, where each sub-folder is
treated as an individual class.

images = []
flat_data = []
target = []

18

for i, direc in enumerate (folders):
for file in direc .iterdir () :

if (str (file). endswith(".jpg ")):
img = imread(file)
img_resized = resize(img , dimension , anti_aliasing =True ,

mode =’reflect ’)
flat_data .append (img_resized .flatten ())
images .append (img_resized)
target .append (i)

flat_data = np. array (flat_data)
target = np. array (target)
images = np. array (images)

Once the data has been loaded, images and target arrays are created and the folders are
enumerated till every ‘.jpg’ has been loaded into the array. Now these array elements are
resized and flattened. Once the above processes are performed, the NumPy array contents
are copied back to the target and images arrays. Then a bunch is returned which contains
the flatten images NumPy array along with the image classification dataset.

Here the split function is not used for splitting the data into train and test sets. Data is
already divided into train and test folders. As a split function also does random split, it has
been avoided as the dataset has to use a specific number of images as its train and test sets.

param_grid = [
{’C’: [* np. arange (0.1, 1.1, 0.1)], ’kernel ’: [’linear ’]} ,
{’C’: [* np. arange (0.1, 1.1, 0.1)], ’gamma ’: [0. 0001], ’kernel ’: [’rbf ’]}

,
]

svc = svm .SVC()
clf = GridSearchCV(svc , param_grid , cv =5, n_jobs =4, verbose =5)
clf .fit(image_dataset_train .data , image_dataset_train .target)

The above code snippet shows the parameter optimization used for the experiment. Grid
search is also performed specifically for hyperparameter tuning. Cross-validation is also
performed (cv=5), which means the model runs 5 times and every time it runs, its accuracy
is recorded. After the code runs for 5 times, all the 5 accuracies are summed up and averaged
out. The average value obtained would be the cross-validated accuracy which could be
considered as the actual accuracy of the model.

y_pred = classifier .predict(image_dataset_test .data)

This is the final step in the SVM classifier, where the test dataset is run over the classifier
and its testing accuracy is predicted. With the execution of this method, the respective
training and testing accuracies are printed out. After the process of cross validation, the
SVM classifier was able to generate an accuracy of about 82 percent on the validation set.
Below is the screenshot of one of the runs.

5.2 Image Classification using MatConvNet

After the first experiment performed using the SVM classifier, the second experiment involves
the usage of deep learning to classify the dataset. Here a variant of VGG-16 has been used.

19

I I

I I

I I

I I

I I

I I
I I

Table 3: Cross validation results for training and testing accuracy of SVM.

Fold Linear SVM Training Accuracy (%) Linear SVM Testing Accuracy(%)

1 100 85.84

2 100 84.07

3 100 85.40

4 100 75.66

5 100 79.20

Average 100 82.03

This deep learning neural network consists of 4 convolutional layers L1, L3, L5, and L7, two
pooling layers L2 and L4, a ReLU layer L6 and the final softmax layer L8. Note that batch
normalization happens at all the convolutional layers. The same data that was used in the
SVM classifier has been used for training and validation. Here for the training, we use 2,028
images and for validation, we use 227 images. Out of the entire dataset, 10 percent of the
images are used for the process of validation.

import numpy as np
import os
import pickle
import tensorflow as tf
import time
from datetime import timedelta
import cv2 ,sys
from pathlib import Path

As observed above, Tensorflow is imported, as it serves as our primary deep learning
framework throughout this experiment. Along with that, we utilize the basic NumPy for
numerical calculations and also for the creation of NumPy arrays. DateTime and time delta
are used to keep track of how long the model takes to train the network completely. It
might be surprising to see a pickle library imported in the above code snippet, the reason
being creating a ‘.pkl’ cache file. Before starting the training process, make sure to cache
the input data into a ‘.pkl’ file for usage throughout the entirety of the training process.
One more advantage of using a pickle file is to save the model into a ‘.pkl’ file as it is less
time-consuming.

Once the necessary libraries have been successfully imported, the next step performed
here is to specify the input directory from where the images need to load. The entire path
of the input directory needs to be provided. Similarly, an output directory also needs to
be specified along with its path where the TensorFlow model can be saved. Part of this
experiment also includes the creation of a cache-wrapper function. As explained in the
previous section, this function is solely responsible for identifying if there is an existing
cache file or not. Followed by which, another wrapper function is used for creating a dataset

20

object. The purpose of this is to make sure that the order in which the filenames appear
will be consistent every time the data is loaded.

def one_hot_encoded(class_numbers , num_classes =None):

One hot encoding function is used for the generation of an integer array. This particular
function takes in two values which are class numbers and number of classes. The number
of classes functionality is unique, where depending on the number of folders, the number of
classes is created. For example, in our experiment, we have two folders namely ‘cracked’ and
‘non-cracked’. So here the method iterates over the folders and every folder is treated as a
class.

A dataset method is specified which takes in the input data. Depending on the structure
of the directory, the code detects how many classes are there based on the previous code
snippet where we specified the number of classes. It is necessary to stick to the following
directory structure, especially for this experiment as the data has been arranged in a par-
ticular way. If the structure of the directory is changed, it is important to make necessary
changes to the code which takes in the input data, as directory structures can be specific to
the way data may be loaded and classes determined. The order in which the directory has
been structured for our dataset is as follows: “Cracky/Crack/Train/Test”. And similarly
“Cracky/No-Crack/Train/Test”. So here we have two classes, ‘Crack’ and ‘No-Crack’. The
number of sub-folders within the root folder determines the number of classes.

The initialization of various layers of the neural network would be the next few steps
that are undertaken. The first convolution layer is initiated which specifies the input (the
previous layer), number of input channels, size of the filter which is the width and height of
the filter, along with the number of filters.

def new_conv_layer(input ,num_input_channels ,filter_size ,num_filters):

Max pool layers are initiated with layer details such as layer size, layer ksize and the
number of filters in the layer, and strides.

def max_pool(layer ,ksize ,strides):

def new_fc_layer(input ,num_inputs ,num_outputs ,use_relu =True):

Post creation of all layers, the input data is given to the neural network to train for a
specific number of iterations. Here 1,500 iterations are used. The individual batch size is 64
images.

model .optimize(num_iterations)

As opposed to the SVM classifier, this deep learning model produced a staggering 92
percent accuracy. The accuracy was confirmed after a cross-validation procedure where the
model is trained several times and averaged out.

21

120

100

80

40

20

0

0 200

- Training Accuracy - Testing Accuracy

400 600 800

nBlATIONS

1000 1200 1400 1600

Figure 12: Accuracy of image classification using MatConvNet.

5.3 Image Classification using VGG-16

A critical requirement of these studies is to draw in a comparison between various machine
learning models. As explained and shown in the previous section where the data was run
over a MatConvNet, similarly the data is run over a VGG-16 network. Here it is to be noted
that we have not used transfer learning, but instead have opted to use it as a fully trained
network. The VGG-16 model has been built from scratch with a definitive layer set. Here
tweaking is done to swiftly be able to run our dataset over the network. Below we can see
the libraries imported and necessary to start building this model.

import keras , os
from keras .models import Sequential
from keras .layers import Dense , Conv2D , MaxPool2D , Flatten
from keras .preprocessing .image import ImageDataGenerator
import numpy as np
from keras .optimizers import Adam
from keras .callbacks import ModelCheckpoint , EarlyStopping
import matplotlib .pyplot as plt

Instead of using TensorFlow, we use a TensorFlow wrapper Keras as the primary frame-
work. Sequential is used to run the layers in a specific order. Numpy is used for mathematical
calculations and array implementations. Here early stopping is utilized to halt the training
once the model reaches the required accuracy and does not go beyond that.

22

def vgg16model () :
model = Sequential ()
model .add(Conv2D(input_shape =(128 , 128 , 3), filters =64, kernel_size =(3

, 3), padding ="same ", activation =
"relu "))

model .add(Conv2D(filters =64, kernel_size =(3, 3), padding ="same ",
activation ="relu "))

As observed in the above code snippet, there is a calling of sequential function, which
dictates how the below-initiated layers are executed in order. Here a convolutional layer is
created with input size the same as that of our images. Using 64 filters and ReLU as the
activation layer. Similarly, multiple convolutional and max-pooling layers are created. It has
to be noted that all of the convolutional layers use the only ReLU as the activation function.

model = vgg16model ()
opt = Adam(lr =1e -4)

As we can see above, one of the very important aspects of any neural network would
be the learning rate. This dictates how fast or slow, the model learns from the given input
data. The slower the learning rate, the better trained the neural network will be, provided
the data is clean enough. Here we are using an ‘adam optimizer’ for the learning function.
Here the learning rate applies to individual iterations.

Post-training, it was seen that the VGG-16 model has a better accuracy at classification.
It was observed that just in 5 epochs the VG-16 model was able to achieve an accuracy of
93.3 percent accuracy. The accuracy increased in comparison with the MatConvNet. On a
similar dataset that was run over SVM, MatConvNet, and VGG-16, VGG-16 came out as a
better model to use for image classification.

In the table below, the complete results of the 3 experiments are given. All these values
have been verified using the N-fold cross-validation approach. All the models are trained 5
times and the resultant accuracies have been averaged out. The table also lists the dedicated
time taken by individual models to reach maximum training accuracy. The models are not
locally run in the machine but have been run over a dedicated server. It is seen that, even
though VGG-16 has better accuracy, it takes more time than SVM and MatConvNet to
fully train as it has more layers. The second column shows the accuracy achieved by all the
models on the validation test set.

Table 4: Model accuracy and time to reach max training accuracy.

Model Test Accuracy(%) Training Time(min) Parameters
SVM 82.03 2.1 16384

MatConvNet 92.38 4.41 677,643
VGG-16 93.31 16.8 65,062,722

23

6 Conclusion

In this study, various machine learning approaches were tested. These included simple
machine learning models such as support vector machines as well as complex deep learning
models. To achieve better training models, data was collected carefully and clean high-
resolution images were utilized. It was also made sure every image used is of the resolution
128 X 128 pixels to sustain integrity. It must be noted that the two deep learning models
were better at classifying the images as either cracked or non-cracked because of choosing the
right dataset. In case of a dataset consisting of a high level of imagery with shadows and poor
lighting would have caused a drastic dip in the accuracy. From an application point of view,
these studies can be scrutinized further before concluding as to which model can be chosen for
use as an image processing software for surficial concrete crack detection. However, our study
strongly suggests the VGG-16 model is better at classifying. Because a VGG-16 network has
solely been devised for applying in these specific scenarios, it is capable of obtaining the best
precision. By looking at the results of the 3 models, we can assert that both deep learning
networks have a far bigger potential of being used for application of image classification as
they have the liberty of utilizing huge amounts of data for training. Meanwhile, these models
can be used for any sort of image processing, not limiting to structural engineering alone.
These models have a massive potential in being predictive softwares for healthcare industry
where the models could be trained using millions of X-ray, CT scan and MRI based imagery
and can be something doctors and healthcare professionals could use as a second opinion
before calling in the judgment. However, in contemporary times, these models have been
applied to domains such as structural engineering and have given birth to automation in
fields other than computer science. Further studies need to be done on various other models
with different layers which can be a cornerstone for capturing much deeper features, such
as embedding the models with drones to get a real-time inspection of building and bridge
surfaces.

24

References

Cha, Y.-J., Choi, W., & Büyüköztürk, O. (2017). Deep learning-based crack damage de-
tection using convolutional neural networks. Computer-Aided Civil and Infrastructure
Engineering , 32 (5), 361–378.

Dorafshan, S., Thomas, R. J., Coopmans, C., & Maguire, M. (2018). Deep learning neural
networks for sUAS-assisted structural inspections: Feasibility and application. In 2018
International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 874–882).

Dorafshan, S., Thomas, R. J., & Maguire, M. (2019). Benchmarking image processing
algorithms for unmanned aerial system-assisted crack detection in concrete structures.
Infrastructures , 4 (2), 19.

Gareth, J. (2010). An Introduction to Statistical Learning: with Applications in R. Springer
Verlag.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems
(pp. 1097–1105).

Moussa, G., & Hussain, K. (2011). A new technique for automatic detection and parameters
estimation of pavement crack. In 4th International Multi-Conference on Engineering
Technology Innovation (IMETI).

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann
machines. In 27th International Conference on Machine Learning (ICML) (pp. 807–
814).

¨ Ozgenel, Ç . F., & Sorguç, A. G. (2018). Performance comparison of pretrained convolu-
tional neural networks on crack detection in buildings. In ISARC Proceedings of the
International Symposium on Automation and Robotics in Construction (pp. 1–8).

Scherer, D., Müller, A., & Behnke, S. (2010). Evaluation of pooling operations in convo-
lutional architectures for object recognition. In International Conference on Artificial
Neural Networks (pp. 92–101).

Zhang, L., Yang, F., Zhang, Y. D., & Zhu, Y. J. (2016). Road crack detection using
deep convolutional neural network. In 2016 IEEE International Conference on Image
Processing (ICIP) (pp. 3708–3712).

25

	Structure Bookmarks
	Deep Learning Based Multi-Sensor Integration
	for Pavement Crack Detection
	by Dr. Mingxuan Sun and Dr. Xiangwei Zhou
	School of Electrical Engineering and Computer Science
	Louisiana State University and
	Agricultural and Mechanical College
	Final Report
	LTRC Project No. 20-1TIRE
	Conducted for
	Louisiana Transportation Research Center
	The contents of this report reﬂect the views of the authors/principal investigators who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reﬂect the views or policies of the Louisiana Department of Transportation and Development or the Louisiana Transportation Research Center. This report does not constitute a standard, speciﬁcation, or regulation.
	-

	July 2020
	Abstract
	Crack detection using surﬁcial images has been an important task in structural engineering. Recently, deep neural networks are being utilized extensively for image classiﬁcation and pattern recognition. Deep neural networks are powerful tools that automatically extract diﬀerent levels of image features and generate accurate predictions. This study investigates crack image classiﬁcation using diﬀerent deep neural network models such as variations of VGG16 along with traditional support vector machines (SVM).
	Acknowledgments
	We would like to thank Mr. Abhishek Huddar for his great contribution to this project.
	Contents
	1
	1
	1
	Introduction

	6

	2
	2
	RelatedWork

	8

	3
	3
	Support Vector Machines

	10

	4
	4
	DeepLearning Models

	11

	4.1
	4.1
	Overall Architecture ofBothModels

	12

	4.2
	4.2
	Convolutional Layer

	15

	4.3
	4.3
	Pooling Layer

	16

	4.4
	4.4
	ReLULayer

	17

	4.5
	4.5
	SoftmaxLayer

	17

	5
	5
	Experiments andResults

	18

	5.1
	5.1
	Image Classiﬁcation using Support Vector Machines

	18

	5.2
	5.2
	ImageClassiﬁcationusingMatConvNet

	19

	5.3
	5.3
	ImageClassiﬁcationusingVGG-16

	22

	6
	6
	Conclusion

	24

	References
	References
	25

	List of Figures
	1
	1
	Raw images to the left, output classiﬁcation to the right

	7

	2
	2
	Someexampleimages usedfortraining
	..
	7

	3
	3
	Concretecrack detectionﬂowchart.

	8

	4
	4
	The hyper-plane margin. Two classes of points: circles and squares classiﬁed by hyper-plane wx-b=0.

	11

	5
	5
	Cracked imagesfromthedataset.

	12

	6
	6
	Non-cracked imagesfrom thedataset

	12

	7
	7
	Overall architecture oftheMatConvNet
	.
	13

	8
	8
	VGG-16 network architecture.

	14

	9
	9
	Convolution example

	16

	10
	10
	Poolingexample.

	16

	11
	11
	ReLUnon-linearfunctions

	17

	12
	12
	Accuracy of image classiﬁcation using MatConvNet

	22

	1 Introduction
	1 Introduction
	In the ﬁeld of structural engineering, for monitoring, inspection and maintenance there is a great demand for bringing in automation. In the United States, the federal law enforces routine inspections every two years for both buildings as well as bridges. So it is imperative to make sure that these quality standards are met. This is exactly where image processing comes into the picture. Using deep convolutional neural networks, the images of bridges and buildings taken from unmanned aerial devices can be pr
	The deep learning convolutional neural networks are a type of artiﬁcial neural network which has an input and an output layer, and in between they have various ﬁltering layers, where each layer absorbs speciﬁc detail of an image, like angle, orientation, color, etc. Millions of images are sent through these layers, which will train the image to identify better. There are various ways in which the neural network will identify whether there is the presence of cracks in any given image or not: one is by labeli
	-

	This particular section showcases how our models operate at a high level to generate the required accuracy. As shown in Fig. 3, we see both the training procedure and the testing procedure. The training procedure has been represented by solid demarcations, and the testing procedure has been represented by dotted demarcations. The data that is being used to input in the CNN classiﬁers are a bunch of surface images of concrete buildings, bridges, and decks which have been taken by a DSLR camera. The data incl
	In the images below, we can see how the concrete crack images have been segregated and processed. Most of these images have been cropped out to 128 X 128 pixels resolutions to keep the integrity of the dataset. For a few of the images, only the part of an image that contains the crack has been carefully chosen. The dataset images below show exactly the kind of images that have been chosen for this experiment.
	Figure
	Figure 1: Raw images to the left, output classiﬁcation to the right.
	Figure
	Figure 2: Some example images used for training.
	These 2,255 images are split out and are strategically placed in two folders namely cracked and no-cracked. The cracked folder contains the data (images) that are required for training,
	These 2,255 images are split out and are strategically placed in two folders namely cracked and no-cracked. The cracked folder contains the data (images) that are required for training,
	and similarly, the non-cracked folder has all the data (images) required for training. However, in our dataset design, the folders cracked and non-cracked also contain sub-folders that have images for testing and validation. The cracked folder, which is our 1st classiﬁer contains 958 training images and 33 testing images. Similarly, the non-cracked folder contains 1,189 training images and 75 testing images. Now the dataset that has been prepared is given as input to the CNN classiﬁer to segregate the crack

	Figure
	Figure 3: Concrete crack detection ﬂowchart.
	2 Related Work
	Before experiments were carried out, various work in the related ﬁeld of structural engineering has been studied and collated. These studies have utilized the applications of diﬀerent deep learning models and they stand as the foundation for all the 3 experiments that have been carried out. Some of these models have used support vector machines, whereas most of these have some form of deep learning neural network tested. Even though some of the experiments seem to yield far lesser accuracy than the accuracy
	A 2016 study utilized deep convolutional neural networks to classify whether cracks are present or not on roads (Zhang, Yang, Zhang, & Zhu, 2016). A relatively smaller dataset was used to perform this study, where the dataset included around 500 images of roads. Here
	A 2016 study utilized deep convolutional neural networks to classify whether cracks are present or not on roads (Zhang, Yang, Zhang, & Zhu, 2016). A relatively smaller dataset was used to perform this study, where the dataset included around 500 images of roads. Here
	these images were of size 3264 X 2448 and all these images were taken from a smartphone. The objective of the study was to show whether the given image of the pavement did indeed have any cracks or not. ConvNet was the deep learning model utilized for the entirety of this study. The neural network consisted of considerably fewer layers making it less deep. The architecture had 4 convolutional layers followed by 2 fully connected layers. ReLU is the activation function used for this study just like most othe

	A conference paper published in the year 2018 did a study on the feasibility of using deep learning convolutional neural networks for structural inspection (Dorafshan, Thomas, Coopmans, & Maguire, 2018). Two modes were used for assessing whether a deep learning model can be incorporated for this or not. These two modes are fully trained and transfer learning. This paper mentioned AlexNet as its primary model against which various other models are tested. This architecture is more detailed in structure and m
	A performance-based study involves various deep learning convolutional networks for ¨
	detecting cracks in concrete bridges and building (Ozgenel & Sorgu¸c, 2018). This study did not introduce any novel deep learning model, rather ran their dataset on 7 pre-trained neural networks namely AlexNet, ResNet, VGG-16, VGG-19, GoogleNet, ResNet 50, ResNet 101, and ResNet 152. It was observed that for smaller data size, VGG-16 and GoogleNet yielded 96 percent accuracy; however for a bigger dataset of over 14,000 images ResNet 101 and ResNet 152 showed an overwhelming accuracy of 97 percent.
	Apart from looking at studies involving only neural networks, it is important to look at other aspects of the network build such as edge detectors. A 2019 study was performed solely on using various edge detectors both spatial and frequency based (Dorafshan, Thomas, & Maguire, 2019). The experiment used 4 spatial edge detectors namely Roberts, Prewitt, Sobel, and Laplacian of Gaussian(LOC). Along with these 2, frequency-based edge detectors were also studied which are Butterworth and Gaussian. By far LOG re
	Apart from looking at studies involving only neural networks, it is important to look at other aspects of the network build such as edge detectors. A 2019 study was performed solely on using various edge detectors both spatial and frequency based (Dorafshan, Thomas, & Maguire, 2019). The experiment used 4 spatial edge detectors namely Roberts, Prewitt, Sobel, and Laplacian of Gaussian(LOC). Along with these 2, frequency-based edge detectors were also studied which are Butterworth and Gaussian. By far LOG re
	varying layers to assess the error rate (Krizhevsky, Sutskever, & Hinton, 2012). The study considered images from ImageNet repository, in which around 15000 images were used for training and testing. It was seen that out of the 3 models trained and tested (SIFT, Sparse Coding, and CNN), CNN achieved the least error rate with tier-1 generating a 37.5 percent error rate and tier-5 generating a much lesser error rate of 17 percent.

	3 Support Vector Machines
	3 Support Vector Machines
	Support vector machines are one of the ways in machine learning where images can be classiﬁed and tested along with training accuracy plotted out (Moussa & Hussain, 2011). A support vector machine is also a kind of supervised learning model. In the data preprocessing stage, whichever features need to be used are segregated and are usually mapped on to a higher dimensional space to successfully distinguish the images that have a crack from the non-cracked ones. What SVM does is, it identiﬁes a bunch of point
	-

	Initially we will deﬁne a particular hyper-plane (Gareth, 2010)
	x : f(x)= xw + w=0
	0

	The output that we derive out of this classiﬁer is actually deﬁned by the following only in case where x has already been given
	G(x)= sign(f(x))
	Now let us assume that we have a training dataset of size n, i.e., (x1,y1)....(Xn,Yn)
	f(xi) >=1, if yi =1
	f(xi) >= −1, if yi = −1
	We shall denote the hyper-planes as follows H= x : f(x)=1 and H= x : f(x)= −1. Here when we talk about the margin, it is the space between both of the hyper-planes Hand H. So what the SVM does is, it will identify the hyper-planes with respect to the hyper-plane with the biggest margin. The diagramatic representation of what a hyper-plane looks like is provided in the image below, where we can see how SVM uses the concept of a hyper-plane. In the ﬁgure, we can see two symbols, squares and circles. Here the
	0
	1
	0
	1

	Figure
	Figure 4: The hyper-plane margin. Two classes of points: circles and squares classiﬁed by hyper-plane wx-b=0.
	When using SVM as a classiﬁer, it is normal to encounter a linear hyperplane between the two classes. But this particular feature does not need to be manually implemented to have a hyperplane, instead a technique of SVM known as kernel trick can be utilized. So here we have an SVM kernel which essentially takes up a low dimensional input into a higher dimensional space. Then the inseparable problem is transformed into a separable problem. Coming to the implementation aspect of the support vector machine, Py
	4 Deep Learning Models
	Two diﬀerent deep learning models have been used here to show which could be a better ﬁt in this scenario. Both the deep learning models have the same type of layers and the exact activation functions. In this section, we will see all the layers that have been used to build this CNN architecture. The overall layers consist of an input layer, multiple convolutional layers, max-pooling layers, activation layer, fully connected layers, batch normalization and ﬁnally an output layer. We call any neural network
	Figure
	Figure 5: Cracked images from the dataset.
	Figure
	Figure 6: Non-cracked images from the dataset.
	4.1 Overall Architecture of Both Models
	In our architecture, we have an input layer which takes in the images of resolution 128 X 128 as input. Here the input images are all RGB images. These images are further generalized to a resolution of 1 X 1 X 96 in the L5 layer. Now, these 96 images as vectors are loaded
	onto the activation layer (Rectiﬁed Linear Unit), about which explanation is provided in the corresponding section. Post which we have a softmax layer, which is predominantly used to predict if there is crack or not (Cha, Choi, & B¨uy¨uk¨ozt¨urk, 2017). This happens after the 4th convolutional layer. Our architecture also holds batch normalization in layers 1, 3, and 5. All the layers’ functionalities are explained in the following subsections. Below is the breakdown of all the layers and their respective f
	Figure
	Figure 7: Overall architecture of the MatConvNet.
	Table 1: Dimensions of the layers.
	Layer
	Layer
	Layer
	Height
	Width
	Depth
	Operator
	Height
	Width
	Depth
	No
	Stride

	Input
	Input
	128
	128
	3
	C1
	20
	20
	3
	24
	2

	Layer 1
	Layer 1
	64
	64
	24
	P1
	7
	7
	-
	-
	2

	Layer 2
	Layer 2
	32
	32
	24
	C2
	15
	15
	24
	48
	-

	2

	Layer 3
	Layer 3
	16
	16
	48
	P2
	4
	4
	-
	-
	2

	Layer 4
	Layer 4
	8
	8
	48
	C3
	10
	10
	48
	96
	2

	Layer 5
	Layer 5
	1
	1
	96
	ReLU
	-
	-
	-
	-
	-

	Layer 6
	Layer 6
	1
	1
	96
	C4
	1
	1
	96
	2
	1

	Layer 7
	Layer 7
	1
	1
	2
	Softmax
	-
	-
	-
	-
	-

	Layer 8
	Layer 8
	1
	1
	2
	-
	-
	-
	-
	-
	-

	In comparison with the above model, a VGG-16 deep learning model is built with similar activation functions and layers. However, this VGG-16 has a diﬀerent number of convolutional, pooling and fully connected layers. Below is a diagrammatic representation of VGG-16 architecture.
	-

	Figure
	Figure 8: VGG-16 network architecture.
	As we can see from the architecture model above, there are various convolutional layers. For the ﬁrst two convolutional layers, we have an associated max pool layer. In the table below, we can see the complete setup of how the layers have been arranged, along with the ﬁlter and stride sizes. The output shape feature is how the dimensions of the image are modiﬁed as it approaches and passes through various layers and ﬁlters. It is a typical feature of neural networks where the size of the image is resized in
	Table 2: VGG layers dimensions.
	Layer (type)
	Layer (type)
	Layer (type)
	Output Shape
	Param Number

	conv2d 1 (Conv2D)
	conv2d 1 (Conv2D)
	(None, 128, 128, 64)
	1792

	conv2d 2 (Conv2D)
	conv2d 2 (Conv2D)
	(None, 128, 128, 64)
	36928

	max pooling2d 1 (MaxPooling2
	max pooling2d 1 (MaxPooling2
	(None, 64, 64, 64)
	0

	conv2d 3 (Conv2D)
	conv2d 3 (Conv2D)
	(None, 64, 64, 128)
	73856

	conv2d 4 (Conv2D)
	conv2d 4 (Conv2D)
	(None, 64, 64, 128)
	147584

	max pooling2d 2(MaxPooling2
	max pooling2d 2(MaxPooling2
	(None, 32, 32, 256)
	0

	conv2d 5 (Conv2D)
	conv2d 5 (Conv2D)
	(None, 32, 32, 256)
	295168

	conv2d 6(Conv2D)
	conv2d 6(Conv2D)
	(None, 32, 32, 256)
	590080

	conv2d 7 (Conv2D)
	conv2d 7 (Conv2D)
	(None, 32, 32, 256)
	590080

	max pooling2d 3 (MaxPooling2
	max pooling2d 3 (MaxPooling2
	(None, 16, 16, 256)
	0

	conv2d 8 (Conv2D)
	conv2d 8 (Conv2D)
	(None, 16, 16, 512)
	1180160

	conv2d 9 (Conv2D)
	conv2d 9 (Conv2D)
	(None, 16, 16, 512)
	2359808

	conv2d 10 (Conv2D)
	conv2d 10 (Conv2D)
	(None, 16, 16, 512)
	2359808

	max pooling2d 4 (MaxPooling2
	max pooling2d 4 (MaxPooling2
	(None, 8, 8, 512)
	0

	conv2d 11(Conv2D)
	conv2d 11(Conv2D)
	(None, 8, 8, 512)
	2359808

	conv2d 12 (Conv2D)
	conv2d 12 (Conv2D)
	(None, 8, 8, 512)
	2359808

	conv2d 13 (Conv2D)
	conv2d 13 (Conv2D)
	(None, 8, 8, 512)
	2359808

	max pooling2d 5 (MaxPooling2
	max pooling2d 5 (MaxPooling2
	(None, 4, 4, 512)
	0

	ﬂatten 1 (Flatten)
	ﬂatten 1 (Flatten)
	(None, 8192)
	0

	dense 1 (Dense)
	dense 1 (Dense)
	(None, 4096)
	33558528

	dense 2 (Dense)
	dense 2 (Dense)
	(None, 4096)
	16781312

	dense 3 (Dense)
	dense 3 (Dense)
	(None, 2)
	8194

	4.2 Convolutional Layer
	The convolutional layer is responsible for 3 main operations in the architecture: initially, it does a dot product (matrix multiplication) of the given input array and the ﬁlter. Here the weights associated with the ﬁlter are randomly populated. There is the usage of stochastic gradient descent (SDC) for ﬁne-tuning of the training values. We should also make a note that the size of the ﬁlter is the same as that of the size of the sub-array and the size of the ﬁlter is smaller than that of the size of the or
	Figure
	Figure 9: Convolution example.
	4.3 Pooling Layer
	4.3 Pooling Layer
	One of the extremely important layers to include in any convolutional neural network is the pooling layer. The primary purpose of utilizing a pooling layer is to reduce the size of the given input array. This entire process of reducing the overall size of the input array is called downsampling. There are multiple ways of using the pooling layers. In our model, we have used the process of max-pooling, in which the layer takes up the maximum elements from the subarray of the input array. A study (Scherer, M¨u
	Figure
	Figure 10: Pooling example.
	Figure 10: Pooling example.

	4.4 ReLU Layer
	ReLU is the activation layer that we will be using in our CNN model. One more 2010 study (Nair & Hinton, 2010) claimed that whenever we use sigmoid based functions, the saturating nonlinearities will slow down the computation process. Because of this, ReLU is being used as a non-linear function in this particular model. In the ﬁgure below, we could see various non-linear functions. Here ReLU has no bounds when it comes to the value for output; however, the input values here cannot be negative. As ReLU has z
	Figure
	Figure 11: ReLU non-linear functions.
	Figure 11: ReLU non-linear functions.

	4.5 Softmax Layer
	Softmax is one of the ﬁnal layers in any given deep learning architecture. This is primarily utilized for processing the input data. This layer puts out probabilities of outcomes in the form of a vector. However, we need to keep in mind that the softmax layer might get costly when more classes are used. In such a situation, we could always use a concept known as candidate sampling which will not consider all the classes but will limit its computations only to a few speciﬁc classes. It also needs to be kept

	5 Experiments and Results
	5 Experiments and Results
	After pre-processing the dataset and creating a databank that is suitable enough to run on various models, the process of training and testing has been performed. There are a total of 2,255 images. We random split the data such that 10 percent of the data is used for testing and the rest of the 90 percent of the data is used for training. We repeat the process ﬁve times and save the data partitions as ﬁve folds. Cross-validation is performed. Speciﬁcally, the model runs ﬁve times and each time it runs on a
	5.1 Image Classiﬁcation using Support Vector Machines
	5.1 Image Classiﬁcation using Support Vector Machines
	The input data folder consists of two folders which are ‘train’ and ‘test’. Both of these folders contain cracked images along with non-cracked images. There are in total of 227 test images that are used in the following experiment. Python is the choice of the programming language used for this experiment along with sci-kit learn as the library used for the process of classiﬁcation. Initially, the Python program is written in Jupyter Notebook. Various libraries have been imported for making sure the SVM is
	from pathlib import Path
	import matplotlib .pyplot as plt
	import numpy as np
	%matplotlib notebook
	from sklearn import svm, metrics , datasets
	from sklearn .utils import Bunch
	from sklearn .model_selection import GridSearchCV , train_test_split
	from skimage .io import imread
	from skimage .transform import resize
	Above are all the libraries that have been imported to implement this support vector machine model. matplotlib is a library used to plot and it also provides an object-oriented API for embedding these plots. numpy is the library required for doing any numeric calculations, containing multidimensional arrays and matrix data structures. sklearn also called sci-kit learn is the core library in this experiment. Its functionality includes linear and logistic regression along with classiﬁcation for which it predo
	-

	def load_image_files(container_path , dimension =(64, 64)):
	Above is the data loading function, which takes in images ﬁles as input and stores them into a container. There are sub-folders within the input folder, where each sub-folder is treated as an individual class.
	images = [] flat_data = [] target = []
	images = [] flat_data = [] target = []
	for i, direc in enumerate (folders):

	for file in direc .iterdir() :
	if (str (file). endswith(".jpg ")):
	img = imread(file)
	img_resized = resize(img, dimension , anti_aliasing =True ,
	mode =’reflect ’)
	flat_data .append (img_resized .flatten ())
	images .append (img_resized)
	target .append (i) flat_data = np. array (flat_data) target = np. array (target) images = np. array (images)
	Once the data has been loaded, images and target arrays are created and the folders are enumerated till every ‘.jpg’ has been loaded into the array. Now these array elements are resized and ﬂattened. Once the above processes are performed, the NumPy array contents are copied back to the target and images arrays. Then a bunch is returned which contains the ﬂatten images NumPy array along with the image classiﬁcation dataset.
	Here the split function is not used for splitting the data into train and test sets. Data is already divided into train and test folders. As a split function also does random split, it has been avoided as the dataset has to use a speciﬁc number of images as its train and test sets.
	param_grid = [{’C’: [* np. arange (0.1, 1.1, 0.1)], ’kernel ’: [’linear ’]} , {’C’: [* np. arange (0.1, 1.1, 0.1)], ’gamma ’: [0. 0001], ’kernel ’: [’rbf ’]}
	,
] svc = svm .SVC() clf = GridSearchCV(svc, param_grid , cv =5, n_jobs =4, verbose =5) clf .fit(image_dataset_train .data , image_dataset_train .target)
	The above code snippet shows the parameter optimization used for the experiment. Grid search is also performed speciﬁcally for hyperparameter tuning. Cross-validation is also performed (cv=5), which means the model runs 5 times and every time it runs, its accuracy is recorded. After the code runs for 5 times, all the 5 accuracies are summed up and averaged out. The average value obtained would be the cross-validated accuracy which could be considered as the actual accuracy of the model.
	y_pred = classifier .predict(image_dataset_test .data)
	This is the ﬁnal step in the SVM classiﬁer, where the test dataset is run over the classiﬁer and its testing accuracy is predicted. With the execution of this method, the respective training and testing accuracies are printed out. After the process of cross validation, the SVM classiﬁer was able to generate an accuracy of about 82 percent on the validation set. Below is the screenshot of one of the runs.

	5.2 Image Classiﬁcation using MatConvNet
	5.2 Image Classiﬁcation using MatConvNet
	After the ﬁrst experiment performed using the SVM classiﬁer, the second experiment involves the usage of deep learning to classify the dataset. Here a variant of VGG-16 has been used.
	Table 3: Cross validation results for training and testing accuracy of SVM.
	Fold
	Fold
	Fold
	Linear SVM Training Accuracy (%)
	Linear SVM Testing Accuracy(%)

	1
	1
	100
	85.84

	2
	2
	100
	84.07

	3
	3
	100
	85.40

	4
	4
	100
	75.66

	5
	5
	100
	79.20

	Average
	Average
	100
	82.03

	This deep learning neural network consists of 4 convolutional layers L1, L3, L5, and L7, two pooling layers L2 and L4, a ReLU layer L6 and the ﬁnal softmax layer L8. Note that batch normalization happens at all the convolutional layers. The same data that was used in the SVM classiﬁer has been used for training and validation. Here for the training, we use 2,028 images and for validation, we use 227 images. Out of the entire dataset, 10 percent of the images are used for the process of validation.
	import numpy as np import os import pickle import tensorflow as tf import time from datetime import timedelta import cv2,sys from pathlib import Path
	As observed above, Tensorﬂow is imported, as it serves as our primary deep learning framework throughout this experiment. Along with that, we utilize the basic NumPy for numerical calculations and also for the creation of NumPy arrays. DateTime and time delta are used to keep track of how long the model takes to train the network completely. It might be surprising to see a pickle library imported in the above code snippet, the reason being creating a ‘.pkl’ cache ﬁle. Before starting the training process, m
	Once the necessary libraries have been successfully imported, the next step performed here is to specify the input directory from where the images need to load. The entire path of the input directory needs to be provided. Similarly, an output directory also needs to be speciﬁed along with its path where the TensorFlow model can be saved. Part of this experiment also includes the creation of a cache-wrapper function. As explained in the previous section, this function is solely responsible for identifying if
	Once the necessary libraries have been successfully imported, the next step performed here is to specify the input directory from where the images need to load. The entire path of the input directory needs to be provided. Similarly, an output directory also needs to be speciﬁed along with its path where the TensorFlow model can be saved. Part of this experiment also includes the creation of a cache-wrapper function. As explained in the previous section, this function is solely responsible for identifying if
	object. The purpose of this is to make sure that the order in which the ﬁlenames appear will be consistent every time the data is loaded.

	def one_hot_encoded(class_numbers , num_classes =None):
	One hot encoding function is used for the generation of an integer array. This particular function takes in two values which are class numbers and number of classes. The number of classes functionality is unique, where depending on the number of folders, the number of classes is created. For example, in our experiment, we have two folders namely ‘cracked’ and ‘non-cracked’. So here the method iterates over the folders and every folder is treated as a class.
	A dataset method is speciﬁed which takes in the input data. Depending on the structure of the directory, the code detects how many classes are there based on the previous code snippet where we speciﬁed the number of classes. It is necessary to stick to the following directory structure, especially for this experiment as the data has been arranged in a particular way. If the structure of the directory is changed, it is important to make necessary changes to the code which takes in the input data, as director
	-

	The initialization of various layers of the neural network would be the next few steps that are undertaken. The ﬁrst convolution layer is initiated which speciﬁes the input (the previous layer), number of input channels, size of the ﬁlter which is the width and height of the ﬁlter, along with the number of ﬁlters.
	def new_conv_layer(input ,num_input_channels ,filter_size ,num_filters):
	Max pool layers are initiated with layer details such as layer size, layer ksize and the number of ﬁlters in the layer, and strides.
	def max_pool(layer ,ksize ,strides):
	def new_fc_layer(input ,num_inputs ,num_outputs ,use_relu =True):
	Post creation of all layers, the input data is given to the neural network to train for a speciﬁc number of iterations. Here 1,500 iterations are used. The individual batch size is 64 images.
	model .optimize(num_iterations)
	As opposed to the SVM classiﬁer, this deep learning model produced a staggering 92 percent accuracy. The accuracy was conﬁrmed after a cross-validation procedure where the model is trained several times and averaged out.
	Figure
	Figure 12: Accuracy of image classiﬁcation using MatConvNet.
	Figure 12: Accuracy of image classiﬁcation using MatConvNet.

	5.3 Image Classiﬁcation using VGG-16
	5.3 Image Classiﬁcation using VGG-16
	A critical requirement of these studies is to draw in a comparison between various machine learning models. As explained and shown in the previous section where the data was run over a MatConvNet, similarly the data is run over a VGG-16 network. Here it is to be noted that we have not used transfer learning, but instead have opted to use it as a fully trained network. The VGG-16 model has been built from scratch with a deﬁnitive layer set. Here tweaking is done to swiftly be able to run our dataset over the
	import keras , os from keras .models import Sequential from keras .layers import Dense , Conv2D , MaxPool2D , Flatten from keras .preprocessing .image import ImageDataGenerator import numpy as np from keras .optimizers import Adam from keras .callbacks import ModelCheckpoint , EarlyStopping import matplotlib .pyplot as plt
	Instead of using TensorFlow, we use a TensorFlow wrapper Keras as the primary framework. Sequential is used to run the layers in a speciﬁc order. Numpy is used for mathematical calculations and array implementations. Here early stopping is utilized to halt the training once the model reaches the required accuracy and does not go beyond that.
	-

	def vgg16model() :
	model = Sequential()
	model .add(Conv2D(input_shape =(128, 128, 3), filters =64, kernel_size =(3
	, 3), padding ="same ", activation = "relu "))
	model .add(Conv2D(filters =64, kernel_size =(3, 3), padding ="same ",
	activation ="relu "))
	As observed in the above code snippet, there is a calling of sequential function, which dictates how the below-initiated layers are executed in order. Here a convolutional layer is created with input size the same as that of our images. Using 64 ﬁlters and ReLU as the activation layer. Similarly, multiple convolutional and max-pooling layers are created. It has to be noted that all of the convolutional layers use the only ReLU as the activation function.
	model = vgg16model() opt = Adam(lr =1e -4)
	As we can see above, one of the very important aspects of any neural network would be the learning rate. This dictates how fast or slow, the model learns from the given input data. The slower the learning rate, the better trained the neural network will be, provided the data is clean enough. Here we are using an ‘adam optimizer’ for the learning function. Here the learning rate applies to individual iterations.
	Post-training, it was seen that the VGG-16 model has a better accuracy at classiﬁcation. It was observed that just in 5 epochs the VG-16 model was able to achieve an accuracy of
	93.3 percent accuracy. The accuracy increased in comparison with the MatConvNet. On a similar dataset that was run over SVM, MatConvNet, and VGG-16, VGG-16 came out as a better model to use for image classiﬁcation.
	In the table below, the complete results of the 3 experiments are given. All these values have been veriﬁed using the N-fold cross-validation approach. All the models are trained 5 times and the resultant accuracies have been averaged out. The table also lists the dedicated time taken by individual models to reach maximum training accuracy. The models are not locally run in the machine but have been run over a dedicated server. It is seen that, even though VGG-16 has better accuracy, it takes more time than
	Table 4: Model accuracy and time to reach max training accuracy.
	Model
	Model
	Model
	Test Accuracy(%)
	Training Time(min)
	Parameters

	SVM
	SVM
	82.03
	2.1
	16384

	MatConvNet
	MatConvNet
	92.38
	4.41
	677,643

	VGG-16
	VGG-16
	93.31
	16.8
	65,062,722

	6 Conclusion
	6 Conclusion
	In this study, various machine learning approaches were tested. These included simple machine learning models such as support vector machines as well as complex deep learning models. To achieve better training models, data was collected carefully and clean high-resolution images were utilized. It was also made sure every image used is of the resolution 128 X 128 pixels to sustain integrity. It must be noted that the two deep learning models were better at classifying the images as either cracked or non-crac
	References
	References
	Cha, Y.-J., Choi, W., & B¨uy¨uk¨ozt¨urk, O. (2017). Deep learning-based crack damage detection using convolutional neural networks. Computer-Aided Civil and Infrastructure Engineering, 32 (5), 361–378.
	-

	Dorafshan, S., Thomas, R. J., Coopmans, C., & Maguire, M. (2018). Deep learning neural networks for sUAS-assisted structural inspections: Feasibility and application. In 2018 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 874–882).
	Dorafshan, S., Thomas, R. J., & Maguire, M. (2019). Benchmarking image processing algorithms for unmanned aerial system-assisted crack detection in concrete structures. Infrastructures, 4 (2), 19.
	Gareth, J. (2010). An Introduction to Statistical Learning: with Applications in R. Springer Verlag.
	Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classiﬁcation with deep convolutional neural networks. In Advances in Neural Information Processing Systems (pp. 1097–1105).
	Moussa, G., & Hussain, K. (2011). A new technique for automatic detection and parameters estimation of pavement crack. In 4th International Multi-Conference on Engineering Technology Innovation (IMETI).
	Nair, V., & Hinton, G. E. (2010). Rectiﬁed linear units improve restricted boltzmann machines. In 27th International Conference on Machine Learning (ICML) (pp. 807– 814).
	¨
	Ozgenel, C¸ . F., & Sorgu¸c, A. G. (2018). Performance comparison of pretrained convolutional neural networks on crack detection in buildings. In ISARC Proceedings of the International Symposium on Automation and Robotics in Construction (pp. 1–8).
	-

	Scherer, D., M¨uller, A., & Behnke, S. (2010). Evaluation of pooling operations in convolutional architectures for object recognition. In International Conference on Artiﬁcial Neural Networks (pp. 92–101).
	-

	Zhang, L., Yang, F., Zhang, Y. D., & Zhu, Y. J. (2016). Road crack detection using deep convolutional neural network. In 2016 IEEE International Conference on Image Processing (ICIP) (pp. 3708–3712).

