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ABSTRACT 

The use of the Rolling Wheel Deflectometer (RWD), which measures deflections at highway 

speeds, offers the potential to characterize the structural capacity of the road network without 

major delays and in a cost-effective way.  In 2009, the Louisiana Department of 

Transportation and Development (DOTD) conducted a comprehensive testing program of 

RWD in District 05. Measurements were used to assess the repeatability of RWD, the effect 

of truck speeds, and to study the relationship between RWD and Falling Weight 

Deflectometer (FWD) deflection measurements and pavement conditions.  Based on the 

results of the experimental program, three structural capacity indicators were developed: the 

RWD index (RI), the RWD Structural Number (SNRWD), and the Zone RWD Index (ZRI). 

The objective of this study is twofold.  First, this project evaluated the aforementioned 

structural capacity indicators in predicting pavement structural capacity based on RWD 

measurements.  Based on this evaluation, the research team introduced modifications to 

improve prediction of pavement structural capacity and to estimate the subgrade resilient 

modulus (Mr) based on the RWD data.  Second, in this study, a methodology was developed 

to integrate the most promising indicator into the Louisiana Pavement Management System 

(PMS) decision matrix and into the State overlay design procedure.  Based on this analysis, 

this project assessed the cost-efficiency of RWD testing in identifying and repairing 

structurally-deficient sections prior to reaching very poor conditions, which may require 

excessive repair or reconstruction. 

Among the pre-developed structural capacity indicators, the SNRWD was found to be the most 

promising model.  Modifications were introduced to the SNRWD model to improve its 

capability in identifying structurally-deficient pavements and to allow for predicting the 

Structural Number (SN) at a 0.1-mile interval.   

Based on the results of this study, it is recommended that structural capacity indicators be 

incorporated into the Louisiana PMS for treatments’ selection as well as the State overlay 

design procedure. The effective pavement structural number is recommended to be 

considered in the overlay design procedure instead of the current practice of assuming 50% 

loss in the original structural capacity. Results of the study found that RWD can result in 

significant savings to the Department if implemented in testing medium to high traffic 

volume roads (e.g., Interstates, major arterials) with an Annual Average Daily Traffic 

(AADT) of 5,000 or more.  The proposed modification to the overlay design procedure is 

implementation-ready and should be utilized by the Department to maximize savings to the 

state from using RWD.  
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IMPLEMENTATION STATEMENT 

Based on the findings and the results of this project, it is recommended to regularly test the 

road segments in the state trafficked with an AADT of 5,000 or more using RWD at a 

frequency of once every four years. In addition, continuous deflection data should be 

incorporated into the Louisiana PMS for treatments’ selection as well as the state overlay 

design procedure. The effective pavement structural number is recommended to be used in 

the overlay design procedure instead of the current practice of assuming 50% loss in the 

original structural capacity. The proposed modifications to the overlay design procedure is 

implementation-ready and should be utilized by the Department to maximize savings to the 

state from using RWD.    
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INTRODUCTION 

Pavement condition evaluation is considered the most important step in the selection of cost-

effective maintenance and/or rehabilitation strategies.  Commonly, non-structural factors 

such as surface distresses and ride quality have been used as the main indicators of in-service 

pavement conditions [1].  Yet, recent research found that there is a little statistical correlation 

between pavement structural and functional conditions [2].  Therefore, many agencies are 

working on implementing structural capacity indicators into their Pavement Management 

System (PMS) and decision-making processes.  The Falling Weight Deflectometer (FWD) is 

widely used to assess the structural capacity of in-service pavements at the project level [3]. 

However, the stop and go process necessitates traffic control to ensure drivers and workers’ 

safety, which limits the use of FWD at the network level [4].  The Rolling Wheel 

Deflectometer (RWD) has emerged in the last decade to measure pavement surface 

deflection while travelling at regular posted speed limits without causing users’ delay [5]. 

The Danish Traffic Speed Deflectometer (TSD) has also been introduced to measure surface 

pavement deflection while travelling at traffic speed [6]. 

DOTD has established a comprehensive pavement management system through which the 

pavement network is surveyed once every two years [7].  The Automatic Road Analyzer 

(ARAN) vehicle is used to collect pavement surface condition data such as cracking, rutting, 

and roughness. However, no structural condition data are collected by the state to assist in 

the process of selecting a suitable treatment strategy, which may lead to two types of errors 

and loss of state funds because of the lack of consideration of structural conditions [8]: 

adding structure to a pavement that does not require it (Type I error – False Positive) and not 

adding structure to a pavement that requires it (Type II – False Negative).  Examples of Type 

I errors include using treatments such as pavement reconstruction, medium overlays, and in 

some cases thin overlays on pavements that are not structurally-deficient and that only 

necessitate functional repairs.  Type II error examples include using “functional” treatments 

such as micro-surfacing, surface treatment, and thin overlays on pavements that are 

structurally-deficient. 

Literature Review 

DOTD started to conduct windshield surveys in the early 1970s to establish a pavement 

distress data collection system, which evolved to videotaping in 1992, and to automatic 

collection in 1995 [9]. Currently, the Louisiana pavement network is surveyed every two 

years to collect and analyze pavement distress data.  All nine districts in Louisiana are 

included in the PMS collection protocol. 



 

 

 

 

 

 

  

  

 

The distresses data collected by DOTD PMS include International Roughness Index (IRI), 

cracking, rutting depth, patching, and faulting.  The Louisiana PMS classifies longitudinal 

and transverse cracking as random cracks, which may be confusing and cause inadequate 

rehabilitation decisions, as each type of distresses has different causes and failure 

mechanisms [9].  The distress data for all pavements are based on a reference location 

system, which consists of control sections divided into log miles.  The pavement distress data 

are collected and reported every 1/10th of a mile and pavement condition is reported based on 

an index scale from 0 to 100 in which 100 represents excellent conditions.  In addition to 

distress data, DOTD PMS also collects vertical clearance measurements, traffic and 

advertising signs, geometric properties (horizontal curves, vertical curves, cross slope, edge 

drop offs, and clearance) and right of way images in all ramps [7]. 

Louisiana Pavement Management System 

The pavement network in Louisiana is divided into nine districts as shown in Figure 1.  The 

Louisiana highway network is the 32nd largest in the United States, which consists of more 

than 60,000 center lane miles and more than 13,000 bridges.  The pavement network is 

categorized based on road function as Interstate Highways, Freeway and Expressway, 

Principal Arterials, Minor Arterials, Collectors, and Local Roads [9]. Yet, for the 

convenience of data analysis and budget allocation, PMS office has modified the concept 

originally developed by DOTD Task Force on Highway Project Identification and 

Prioritization and classified the pavement network in Louisiana into four categories as 

Interstate Highway System (IHS), National Highway System (NHS), State Highway System 

(SHS), and Regional Highway System (RHS), as presented in Table 1.  The NHS includes 

interstate highways, some urban and rural arterial highways, and few urban and rural 

collector highways. The SHS complements the NHS and is comprised of the highways 

whose principal function is intercity, interregional, interstate and international transport of 

people and goods. The RHS consists of highways whose principal function is the local 

movement of people and goods. 

Table 1 
Louisiana highway network functional classification  

Classification Length (miles) Percentage 

HIS 893 5.4% 
NHS 1,550 9.3% 
SHS 7,043 42.2% 
RHS 7,184 43.1% 
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DOTO DISTRICTS 
Number District Name 

02 New Orlean s 

03 Lafayette 

04 Shreveport 

OS Monroe 

07 Lake Charles 

08 Alexan d ria 

58 Chase 

61 Baton Rouge 

62 Hammond 

<p East 

South 

Figure 1 
DOTD pavement network districts [9] 

Louisiana PMS Data Collection. When collecting data, whether the images are 

right-of-way images or pavement surface images, the Department follows a general rule in 

relation to direction. The primary direction or Direction 1, in most cases, travels from south 

to north or from west to east.  The opposite direction, also referred to as the secondary 

direction or Direction 2, travels north to south and from east to west as shown in Figure 2 

[10]. 

Figure 2 
Primary and secondary direction for collecting data [10] 
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DOTD utilizes a special vehicle known as the Automatic Road Analyzer (ARAN) to survey 

the pavement network and collect pavement surface conditions data once every two years.  

This specific vehicle, shown in Figure 3, is equipped with cameras, lasers, sensors and 

computers to collect high-definition digital images of the pavement surface and right of way 

and electronic data of pavement distresses namely cracking, rutting, faulting, IRI, and 

macrotexture for both primary (i.e., South to North or West to East) and secondary (North to 

South or East to West) directions.  While the ARAN is equipped with a GPS unit, the data 

are collected and reported for every 1/10th of a mile of the road network [9].  The continuous 

digital images and distress data (VISIDATA) acquired by ARAN are utilized by each district, 

and the personnel has been trained to use the data [11]. When collecting pavement images, 

the various types of cracks are identified by distress category, rated in order of severity, 

measured, and recorded in the database; see Figure 4(a).  Symbols indicate distress category 

and a three-color system is used to distinguish severity levels as shown in Figure 4(b) [10]. 

Figure 3 
ARAN vehicle used by LA PMS 

(a) Image by ARAN 
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(b) Distress Identification 

Figure 4 
Images by ARAN system for distress identification [10] 

Louisiana Data Structure. The collected condition data are stored in the mainframe 

computer and are assigned a number according to the project.  The project number consists of 

nine digits; the first five digits refer to the control section and the remaining four digits refer 

to the project number performed on the control section [9]. The material type and thickness 

information of asphalt, base, and subbase layers are located under Menu/Project/Roadway 

Xsec in Material Testing System (MATT) and the surface type, roadway geometry and traffic 

data are located in both MATT and under Menu/Summary Log in Highway Needs section 

[11]. The data collected by FWD and Ground Penetrating Radar (GPR) are not included in 

the PMS database. The mainframe system is a menu driven system, which allows DOTD 

users to access the data. The DOTD mainframe menu system is presented in Figure 5. 

Figure 5 
DOTD mainframe menu view [12] 
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The pavement data related to materials, traffic, and project are stored in separate databases 

and could be accessed and updated by authorized personnel in the different sections.  In some 

cases, the data stored in different databases could be duplicate or may conflict [12]. All 

databases may be accessed through the mainframe menu system. 

Louisiana PMS Data Storage. The collected condition data for the PMS are stored 

in a Structure Query Language (SQL) enterprise database used by Deighton Transportation 

Infrastructure Management System (DTIMS) and made available to end users through 

DOTD Pavement Management Intranet Web Portal, Visiweb, and IVision (Video Log view 

linked to pavement condition data). 

Louisiana PMS Performance Prediction Models. Future pavement conditions can 

be predicted by performance models.  Performance models can be utilized to determine the 

required maintenance and/or rehabilitation treatment as well as the deterioration rate and 

remaining service life (RSL) of the pavement.  Performance models are functions of traffic 

loads, traffic volumes, material properties, weather data, and pavement type [7]. 

Empirical (Regression) models are used to predict pavement performance.  The relation 

between performance index and age are plotted using performance curves for each pavement 

family.  Pavement families are defined based on pavement type (composite, asphalt, jointed 

concrete, and continuously reinforced concrete pavements) and highway classification (i.e., 

IHS, NHS, SHS, and RHS) [9]. Distress index models currently used by DOTD are based on 

at least six years of data collected at two-year intervals.  The models are primarily a function 

of “age” of the pavement.  Table 2 presents the performance prediction models used by 

DOTD for flexible pavements in year 2010. 

Louisiana PMS Data Analysis and Decision Matrix. Collected data are reported 

every 0.1 mile and are analyzed to calculate the Pavement Condition Index (PCI) on a scale 

from zero to 100.  The PCI varies from 95 to 100, 85 to 94, 65 to 84, 50 to 64, and 49 or less 

for very good, good, fair, poor, and very poor roads, respectively.  A number of threshold 

values are also used to trigger a specific course of maintenance and rehabilitation (M&R) 

actions [11].  For flexible pavements, the PCI is calculated as follows: 

PCI = MAX (MIN (RNDM, ALCR, PTCH, RUFF, RUT), {AVG (RNDM, ALCR, PTCH, 
RUFF, RUT) – 0.85 STD (RNDM, ALCR, PTCH, RUFF, RUT)})  (1) 

where, 

RNDM = random cracking index;  

ALCR = alligator cracking index;  
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PTCH = patch index; 

RUFF = roughness index; 

RUT = rutting index; 

STD = standard deviation. 

Table 2 
Louisiana PMS performance prediction models  

Category Equation 
Alligator Cracking Arterial 100 - 0.7027 * AGE 
Alligator Cracking Collector 100 - 0.6795 * AGE 
Alligator Cracking Interstate  100 - 0.4172 * AGE 
Patching Arterial 100 - 0.2130 * AGE 
Patching Collector  100 - 0.2628 * AGE 
Patching Interstate 100 - 0.2183 * AGE 
Random Cracking Arterial  100 - 1.6102 * AGE 
Random Cracking 
Collector

 100 - 1.7534 * AGE 

Random Cracking 
Interstate  

100 - 1.6102 * AGE 

Roughness Arterial 
0.0003 * (AGE)3- 0.0391 * (AGE)2 - 0.7983 * (AGE) 
+ 100 

Roughness Collector 
0.0002 * (AGE)3 - 0.0311 * (AGE)2 - 0.5665 * (AGE) + 
100 

Roughness Interstate 
0.0003 * (AGE)3 - 0.0391 * (AGE)2 - 0.7983 * (AGE) 
+ 100 

Rutting Arterial 100 * EXP(-0.0121 * AGE) 
Rutting Collector 100 * EXP(-0.008 * AGE) 
Rutting Interstate 100 * EXP(-0.0121 * AGE) 

The treatment decision matrix used by DOTD PMS mainly depends on the surface distress 

indices and the highway functional class (interstate, arterial, and collector).  Table 3 presents 

the thresholds and trigger values, which are currently used by DOTD for treatment selection 

and decision making.  As shown in this table, no structural capacity indicator is currently 

implemented into the State PMS and treatment selection process. 
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Table 3 
DOTD trigger values for rehabilitation strategies [10] 

Treatment type Alligator 
cracks 

Random Patching Rutting Roughness 

Micro-surfacing on interstate  ≥98 ≥98 ≥98 ≥80 
<90 

≥85 

Thin overlay on interstate ≥90 ≥85 ≥90 <80 ≥85 <90 
Medium overlay on interstate ≥65 

<90 
<90 ≥65 

<90 
<85 

Structural overlay on interstate <65 <65 

Micro-surfacing on arterial ≥95 ≥95 ≥95 ≥65 
<80 

≥80 

Thin overlay on arterial ≥90 ≥80 <95 ≥80 <65 ≥70 <80 

Medium overlay on arterial ≥50 
<90 

<80 ≥60 
<80 

<70 

Structural overlay on arterial <50 <60 

Polymer surface treatment on 
collector 

≥85 
<95 

≥80 
<95 

≥85 ≥65 ≥80 

Micro-surfacing on collector ≥95 ≥95 ≥95 ≥65 
<80 

≥80 

Medium overlay on collector ≥60 
<85 

<80 ≥65 
<85 

<65 ≥60 
<80 

In place stabilization on 
collector 

<60 <65 <60 

Overview of RWD Equipment 

The stationary nature of FWD limits its utilization at the network level; therefore, a number 

of moving deflection measurement devices were developed in the last decade.  A SHRP2 

study selected the RWD as one of the most promising moving deflection measurement 

devices [13]. 

The Rolling Wheel Deflectometer.  The most recent version of the RWD was 

developed by Applied Research Associates (ARA, Inc.) in collaboration with FHWA Office 

of Asset Management.  It consists of a 53-ft. long semitrailer applying a standard 18,000-lb. 

load on the pavement structure by means of a regular dual-tire assembly over the rear single 

axle [14]. A general view of the 53-ft. custom designed RWD trailer is shown in Figure 6.  
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deflection system Cooling and loading system 

The trailer is specifically designed to be long enough to separate the deflection basin, due to 

the 18-kip rear axle load, from the effect of the front axle load.  In addition, the trailer is 

long-enough to accommodate the aluminum beam so that the laser range needed to tolerate 

any bouncing of the trailer during operation could be minimized.   

Figure 6 
General overview of the RWD system 

The latest version of the RWD, introduced in 2003, can collect deflections at traffic speeds.  

Several modifications and upgrades were introduced to the RWD with respect to the laser 

sensors, data acquisition system, and software.  The laser collection system was moved 

between the tires, and a new procedure was introduced for laser calibration. The laser sensors 

are set to collect a reading at a fixed interval of 0.6 in. at all truck speeds.  Prior to the field 

testing program described in this study, a more accurate and stable deflection measurement 

system customized for pavement applications was installed.  The upgraded system has a 4-in. 

measurement deflection range and has an accuracy of ± 0.001 in.  
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The whole deflection system of the beam and the laser sensors is housed in a thermal 

chamber to prevent external factors, such as wind and temperature fluctuation, from affecting 

the measurements during testing.  The beam laser has four laser sensors that are used 

concurrently to measure the pavement surface deflection due to the rear axle based on optical 

trigonometry, as shown in Figure 7.  The rear axle and wheels were designed and placed to 

prevent any conflict with laser paths.  A two-person crew, driver, and operator is sufficient to 

perform the entire test as the RWD enables the operator to control the sensors, as well as to 

collect and store the data, through the use of a computer in the tractor.  RWD is also 

equipped with a GPS for geo-referencing as well as an infrared thermometer for measuring 

surface pavement temperature. 

In the figure, h and h’ are the depth of the non-deflected and the deflected surface.  

Figure 7 
RWD deflection measurement system 

RWD Studies in Louisiana.  A comprehensive testing program was conducted by 

DOTD in District 05, Louisiana, 2009.  The testing program aimed at assessing the capability 

of the RWD in evaluating pavements structural conditions, at the network-level.  The RWD 

field testing program consisted of two phases.  In the first phase, about 1,250 miles of the 
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asphalt road network in District 05 was tested using the RWD system based on ARA 

standard testing protocol.  In the second phase, 16 road-sections (each 1.5 miles), referred to 

as research sites, were tested and were used for a detailed evaluation of RWD technology.  

The test plan consisted of conducting RWD and FWD measurements on the selected flexible 

pavement test sites.  The FWD testing was conducted within 24 hours of the completion of 

RWD testing [15]. The testing program data were utilized by Elseifi and co-authors to assess 

the repeatability and characteristics of RWD measurements, the effect of the RWD operation 

speed, and to evaluate the relationship between RWD and FWD deflection measurements 

[16]. 

To assess the repeatability of the RWD measurements, three RWD runs were performed in 

each of the 16 research sites. The repeatability of the measurements was represented by the 

coefficient of variation (COV (%) = standard deviation x 100/ average).  The repeatability of 

the RWD measurements was concluded to be acceptable with a COV (%) ranging from 7 to 

22% and with an average of 15%. It was worth noting that the measurements uniformity and 

repeatability was improved in the sites that were in good conditions than in the sites that were 

in poor conditions as shown in Table 4 [16]. 

Table 4 
Correlation between RWD measurements repeatability and pavement conditions 

Site ID Average (COV)% Pavement Condition 

1 15 Fair 
2 16 Good 
3 13 Very good 
4 8 Very good 
5 14 Very good 
6 7 Very good 
7 13 Very good 
8 20 Fair 
9 17 Very good 

10 16 Poor 
11 19 Poor 
12 22 Fair 
13 18 Good 
14 19 Poor 
15 15 Good 
16 16 Poor 

To assess the effect of the RWD operational speed on the deflection measurements, RWD 

runs were performed at each of the 16 research sites at speeds of 20, 30, 40, 50, and 60 mph 
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up to the posted speed limit on each section.  The effect of the testing speed on the RWD 

measurements was minimal as shown in Figure 8.  In addition, a statistical analysis was 

conducted between the RWD measurements at the different testing speeds (except the 60 

mph speed as only one site was tested at this speed).  According to the statistical analysis, the 

RWD measurements at the different testing speeds were found to be statistically equal at a 

95% confidence level with a p-value of 0.355.  This finding would allow comparing the 

RWD measurements conducted at different speeds and for different roadway functional 

classes [16]. 
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Figure 8 
Variation of the RWD measurements with respect to the operational speed 

RWD deflections were compared to the FWD maximum surface deflections at a load of 

9,000 lbs., for the 16 research sites, as shown in Figure 9.  It was noted that the scattering and 

uniformity of the FWD and RWD data correlated well with the conditions of the roadway, as 

shown in Figure 10. Both test methods reflected pavement conditions and structural integrity 

of the road network by providing for a greater average deflection and scattering for sites in 

poor conditions. RWD deflection measurements were in general agreement with FWD 

deflections measurements; however, the mean center deflections from RWD and FWD were 

statistically different for 15 of the 16 sites [15]. 
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Figure 9 
Average RWD measurements vs average FWD measurements at the 16 research sites 
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Figure 10 
RWD measurements vs. FWD measurements for (a) sites in very good conditions and 

(b) sites in poor and fair conditions [15] 

Zhang and co-authors investigated the capability of the RWD technology in avoiding Type I 

and Type II errors when making treatment recommendations [17]. One example of Type I 

error is assigning a structural treatment (e.g., reconstruction or medium overlay) to a 

pavement section in good structural condition.  On the other hand, an example of Type II 

error is to assign a functional treatment (e.g., microsurfacing or thin overlay) to a pavement 

section in poor structural condition.  To achieve these objectives, an index calculated each 

0.1 mile and based on the RWD data; namely, the Zone RWD Index (ZRI), was used [17]. 

All the elements of 0.1-mile pavement segments, tested with the RWD, were sorted based on 

the thickness of the Asphalt Concrete (AC) layer as shown in Table 5.  Furthermore, for each 

AC layer thickness group, a Cumulative Distribution Function (CDF) was developed with 

respect to the ZRI. By assuming that 50 % of the RWD-tested pavement segments were in 

poor structural condition, ZRI thresholds were determined.  According to the authors, a 

pavement segment with ZRI > the 50 percentile of ZRI CDF would need structural 

rehabilitation. On the other hand, a pavement segment with ZRI < the 50 percentile of ZRI 

CDF would need functional rehabilitation.  Figure 11 presents an example of the ZRI CDF 

and the determination of the 50 percentile ZRI for group number 3 (3 to 4 in. AC layer 

thickness) [17]. 
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Table 5 
Pavement segments groups according to the AC layer thickness [17] 

Group Number AC layer Thickness Group 
(in.) 

Number of 0.1-mile 
segments 

1 0-2 878 
2 2-3 1,366 
3 3-4 1,690 
4 4-5 1,575 
5 5-6 969 
6 6-7 675 
7 7-8 645 
8 8-9 649 
9 9-10 440 
10 10-11 305 
11 11-12 252 
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Figure 11 
ZRI CDF for group number 3 [17] 

By using the 50% ZRI CDF as a threshold for whether to assign structural treatments or 

functional treatments to the pavement sections, the percentages of Type I and Type II errors 

in the current DOTD practice were calculated.  Results showed that current treatment 

selection practices have a Type I error percentage of 34% and a Type II error percentage of 

39.5%. Based on these findings, the authors recommended future PMS to implement 
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structural indices in addition to the functional distress indices.  Further, the RWD was 

identified as one of the most promising technology to be utilized for pavement structural 

evaluation purposes [17]. 

A study conducted by Gaspard and co-authors aimed at identifying RWD Index (RI) ranges 

for pavement treatment selection purposes.  A set of theories were used to achieve the study 

objectives; namely, multivariate statistical methods, and fuzzy logic [18]. 

Statistical analysis revealed that the RI is not sufficient to assist in treatment selection 

practices used by DOTD.  However, the RI was found to be a successful parameter to 

distinguish between structurally-sound and structurally-deficient pavement conditions.  The 

authors recommended that structurally-sound pavements, based on the RI, not to receive a 

structural treatment or rehabilitation.  On the other hand, the authors recommended further 

FWD testing to be conducted on pavements in structurally-deficient conditions, based on the 

RI, to determine the most appropriate treatment activity [18]. 

To minimize the effects of pavement thickness on RWD stiffness measurements, the data 

were stratified into thickness groups.  Further, the authors employed a combination of fuzzy 

statistics, rank ordering, inductive reasoning, and engineering judgment from the scientific 

field of fuzzy logic to reveal function-theoretic relationships for structurally-sound and 

structurally-deficient pavements, their interaction, RI threshold ranges based upon pavement 

thickness groups, and algorithms to assess the structural conditions of large segments of 

roadways [18].  Figure 12 presents an example of the fuzzy RI thresholds for pavements with 

total thickness of 6 to 7 in. (thick group 6). 
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Figure 12 
Fuzzy functions for structurally sound and deficient groups 
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Recent Studies on RWD. ARA, Inc. was contracted by the Pennsylvania Department 

of Transportation (PennDOT) to conduct a two-phase field testing program using the RWD 

in Pennsylvania. The first phase covered 288 miles of PennDOT road network in seven 

counties and was conducted in April 2013. In the second phase, a more detailed testing 

program was conducted on 16 road sections that were selected with different structural 

configurations and surface conditions [19]. 

The testing scheme consisted of conducting both RWD, coring, and FWD measurements on 

each of the selected sites in the second phase.  FWD testing was conducted in the right wheel 

path at 200-ft intervals. Pavement temperature was recorded in conjunction with each test.  

Surface deflections were corrected for variation in pavement temperature by shifting the 

measurements to a standard temperature of 68°F (20°C) using the BELLS and the AASHTO 

1993 methods.  This method was also used to correct FWD deflection data [19].  The 

research team was able to calculate pavement remaining service life (RSL) using FWD or 

RWD data. Furthermore, the RWD device was found to be efficient since it allows for high-

speed measurement of pavement deflections [20].  Based on these findings, the research 

team recommended using the RWD at the network level.   

Gedafa and co-workers presented the results of a research effort aimed at estimating 

pavement structural number based on FWD and/or RWD measurements [21, 22].  The study 

divided the state road network in Kansas into 23 categories based on functional class, 

pavement type, traffic loading, and roadway width.  For each roadway category, a regression 

model was developed to compute the SN from deflection data, traffic data, and surface 

condition indices.  The study concluded that the structural condition of in-service flexible 

pavements could be assessed at the network level using the center deflection measured by 

either FWD or RWD.  A model was also developed for the overall pavement network with a 

coefficient of determination (R2) of 0.77: 

SN= 6.3763- 0.3364 d0 + 0.0062d0
2 – 0.0805D + 0.01D2-0.0008(d0*D) 

- 0.4115 log (EAL) + 0.1438 (log (EAL))2 + 0.0836ETCR-0.0091 EFCR 
+ 0.0004 EFCR2 - 0.4061 Rut (2) 

where, 

SN= pavement structural number; 

d0= center deflection (mils); 

D= pavement depth (in.); 

EAL = equivalent standard daily traffic;  

EFCR/ETCR=equivalent fatigue/transverse cracking; and  
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Rut=rut depth (in.). 

A study was conducted at the MnROAD facility to evaluate the accuracy of two traffic speed 

deflections devices (TSD and RWD) and to assess the use of the continuous deflectometers at 

the network level [23].  To assess the accuracy of the two continuous deflectometers, 20 

sensors were embedded in the MnROAD facility (strain gauges, pressure cells, geophones, 

accelerometer, etc.).  FWD was used to verify the performance of each sensor and to evaluate 

the correlation between RWD and FWD as well as the relation between the deflection 

velocity of the accelerometer and TSD.  FWD measurements were found to have a strong 

correlation (R2=0.99) with the installed deflection sensors, and the RWD measurements were 

found to have a good correlation (R2=0.86) with the installed deflection sensors. 

Researchers also used the installed geophones to calibrate the 3D Move software, which 

estimates pavement dynamic responses at any given point within the pavement structure 

using a continuum-based finite-layer approach.  The software was then used in identifying 

the most promising indices from continuous deflectometers measurements that best describe 

the structural capacity of the pavement.  Twelve structural capacity indicators were 

developed based on TSD and were recommended as the most promising indices to be used at 

the network level. The study concluded that both RWD and TSD are ready to be used at the 

network level and to develop models as structural capacity indicators. 

The SHRP 2 project (R06F) aimed at assessing the applicability of current continuous 

deflection devices to be incorporated in the development of practical and cost-effective 

pavement rehabilitation strategies, and the ability of such devices to screen structurally-

deficient pavement sections and scope their needs at the network level [13].  The research 

team selected the TSD along with the RWD as the most promising devices to achieve these 

goals. In order to evaluate the effectiveness of the TSD, various network-level sites were 

selected including different types of pavement sections.  Each pavement type included 

subsections with good, fair, and poor functional conditions and reference FWD testing where 

possible. 

The analysis of data indicated that both RWD and TSD provide adequate repeatability for 

network-level pavement management applications. Moreover, the TSD provides deflection 

measurements that are comparable to those collected using FWD; however, it was 

recommended to conduct further evaluation of the usefulness and cost-effectiveness of the 

TSD as well as the optimum method to interpret measurements from the device. 
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Incorporation of Structural Capacity in PMS 

The effective structural number is typically calculated using the AASHTO 1993 pavement 

design guide procedure using FWD measurements.  This approach assumes that the subgrade 

resilient modulus can be obtained by relating it to the surface deflection at a large distance 

from the load as shown in equation (3):  

M   
. 	

 (3)
∗  

where, 

MR = backcalculated subgrade-resilient modulus (psi); 

P = applied load (lbs.); and 

dr = deflection at a distance r from the center of the load (in.).  

The effective modulus, which describes the strength of all pavement layers above the 

subgrade, can be computed from FWD deflection measured at the center of the load plate 

knowing the subgrade resilient modulus and the total thickness of the pavement structure.  

These properties can be related and used to calculate the effective modulus (Ep) using 

equation (4): 

1
[1 ]

21 (D )MRd0 1 a 
1.5qa 

  
EpD Ep 2 ( )1 ( * 3 ) MRa MR  (4) 

where, 

Ep = effective modulus of all pavement layers above the subgrade (psi);  

d0 = deflection measured at the center of the load plate and adjusted to a standard temperature 
of 68oF (in.); 

q = load plate pressure (psi); 

a = load plate radius (in.); 

D = total thickness of pavement layers above the subgrade (in.); and 

MR = subgrade-resilient modulus (psi). 

Using the total thickness of the pavement layers and the effective pavement modulus 

calculated from equation (5), the effective structural number (SNeff) can be computed using 

the following expression: 
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SNeff = 0.00045 * D * EP (5) 

where, 

D = total thickness of the pavement layers (in); and  

Ep = effective pavement modulus of all layers above the subgrade (psi). 

Recent Studies on Implementing Structural Indicators in PMS. A study was 

conducted by Flora and co-workers that aimed at developing a structural condition based 

index scaled from zero to 100 and that could be implemented into the Indiana Department of 

Transportation (INDOT) PMS decision matrix.  Data considered in the study were collected 

from more than 10,000 one-mile sections in Indiana and encompassed weather data, distress 

surveys, pavement type, and FWD measurements [24]. Pavement types were classified in 

this study into six families according to the type of pavement (Flexible/PCC) and the 

functional class (Interstate, National Highway System [NHS], and Non-NHS).  The 

following model was developed to calculate the Structural Strength Index (SSI) knowing the 

FWD central deflection: 

SSIjk=100 1-∝eσγ 
-β 

				 (6) 

where, 

j, k = indices identifying the pavement family;  

α, β, γ = regression coefficients; and 

σ = center surface deflection (mils.). 

The measurements were corrected due to temperature variation as follows: 

D1corrected= α σ  (7) 

where, 

α: correction factor determined from Table 6. 

Table 6 
Temperature correction factors [24] 

Pavement temp (°F) 41 50 59 68 77 86 95 104 113 122 
Correction factor 0.74 0.81 0.9 1 1.11 1.22 1.34 1.46 1.59 1.72 

The regression coefficients for equation (6) were determined for each pavement family as 

shown in Table 7. 
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Table 7 
 Regression coefficients for the SSI model [24] 

Pavement Family α β γ 

Flexible interstate 1.0013 40.303 3.853 
Flexible NHS 1.0035 66.811 3.106 
Flexible Non NHS 1.0124 100.838 2.586 
Rigid interstate 1.0345 14.301 3.056 
Rigid NHS 1.0017 338.056 4.995 
Rigid Non NHS 1.0717 23.600 1.999 

To implement the SSI as a structural capacity indicator into INDOT PMS decision matrices, 

trigger values and ranges were established. Researchers set the thresholds for excellent, very 

good, good, fair, and poor conditions for the SSI based on the ranges shown in Table 8. 

Table 8 
Trigger values for the SSI [24] 

Pavement Family Excellent Very good Good Fair Poor 

Flexible interstate 95-100 90-95 85-90 80-85 <80 
Flexible NHS 90-100 85-90 80-85 75-80 <75 
Flexible Non NHS 85-100 80-85 75-80 70-75 <70 
Rigid interstate 95-100 90-95 85-90 80-85 <80 
Rigid NHS 90-100 85-90 80-85 75-80 <75 
Rigid Non NHS 85-100 80-85 75-80 70-75 <70 

Texas. A research study was conducted by Zhang and co-workers and aimed at 

characterizing the structural conditions of in-service pavements to be used in PMS 

applications at the network level [8].  The researchers evaluated available structural capacity 

indicators and elected to use the pavement Structural Number (SNeff) calculated based on 

FWD measurements, equation (5).  To define the threshold values that would be 

implemented in PMS, the researchers collected FWD data from 13,522 roadway sections 

located in different climatic regions in Texas; the selected sections had varying soil moduli 

and traffic levels [25]. A Structural Condition Index (SCI) was calculated by dividing the 

SNeff by the required SN for 20 years based on the following equation: 

SCI  	  (8)

where, 

SCI= Structural Condition Index; 
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SNeff= existing (estimated) Structural Number; and  

SNreq= required Structural Number. 

A mechanical approach was used to validate the developed SCI; the vertical compressive 

strain at the top of the subgrade and the horizontal tensile strain at the bottom of the surface 

layer were determined at each FWD test point for the seven sections, using the WESLEA 

program.  The Asphalt Institute (AI) rutting and fatigue equations were used in performance 

prediction [25]: 

Nd=1.365*10-9 (εc)-4.477  (9) 

where, 

Nd  = Number of repetitions for subgrade rutting failure; and 

εc  = Vertical compressive strain at the top of the subgrade. 

Nf =0.0796*10-9 (εt)-3.291(E)-0.854        (10) 

where, 

Nf = Number of repetitions for fatigue failure; 

εt = Horizontal tensile strain at the bottom of the AC layer; and 

E = Surface layer modulus.   

The numbers of repetitions for failure for both fatigue and rutting were then used to calculate 

the fatigue remaining life ratio and the rutting remaining life ratio, respectively: 

Fatigue	Remaining	Life	Ratio  
	 	 	 	 	 	 				

 (11) 

Rutting	Remaining	Life	Ratio   (12)
	 	 	 	 	 	  

The rutting/fatigue remaining life ratios were computed for each of the FWD test points and 

were then compared to the SCI value for the same point.  The coefficient of determination 

(R2) was used in the comparison.  Both rutting and fatigue remaining life ratios for asphalt 

pavements showed good correlation with the SCI with R2 of 0.98 and 0.92, respectively. 

Results also showed that the SCI was sensitive to pavement deterioration.  This conclusion 

was based on sensitivity analysis conducted between the TxDOT PMS data for years 2000, 

2001, and 2002 and the matching deflection data. Based on this analysis, the authors 
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recommended that the SCI be used as a screening tool at the network level for PMS 

applications. 

A research project was conducted by Bryce and co-workers and aimed at developing a 

structural-based index and implementing it in the VDOT network-level pavement evaluation 

and rehabilitation process [2].  The research effort was divided into three main tasks (1) 

Develop a structural condition index at the network-level; (2) Find a methodology to 

implement this index into the VDOT pavement evaluation process; and (3) Identify pavement 

management applications and situations to use the structural index. 

The researchers conducted a comprehensive study on the VDOT PMS evaluation process, 

decision matrices, and enhanced decision trees.  It was found that VDOT divides the 

pavement distress indices into two categories; load related distresses (LDR) and non-load 

related distresses (NDR); the lowest value of both indices is then called the critical condition 

index (CCI). The CCI has a scale from 1 to 100 and the value of 100 describes excellent 

conditions. The categories of pavement conditions according to the CCI are shown in Table 

9. 

Table 9 
Pavement condition categories [2] 

Index Scale (CCI) Pavement Condition 
≥ 90 Excellent 
70-89 Good 
60-69 Fair 
50-59 Poor 
≤ 49 Very poor 

The authors found that the decision process is divided into three steps; the first step is a 

decision matrix that has the pavement distresses as the inputs and decisions as outputs as 

shown in Table 10. The second step is a filter in which the CCI is implemented.  The final 

step is an enhanced decision tree where traffic data, pavement age, and structural efficiency 

are implemented.  The enhanced decision tree was the best candidate to implement a 

structural capacity indicator into the decision process. 
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Table 10 
VDOT decision matrix for flexible pavement [2] 

 Alligator cracking 
Frequency Rare Occasional Frequent 
Severity Low Medium High Low Medium High Low Medium High 

R
ut

ti
ng ˂

 1
0%

None DN DN CM DN CM CM PM CM RM 
˂ 0.5in DN DN CM DN CM CM PM CM RM 
˃ 0.5in CM1 CM CM CM RM RM CM RM RM 

˃
 1

0%

None DN DN CM DN CM CM PM CM RM 
˂ 0.5in CM CM CM CM CM CM CM RM RM 
˃ 0.5in RM RM RM RM RM RM RM RC RC 

1 CM= Corrective Maintenance; DN= Do Nothing; PM= Preventive Maintenance; RC= 
Rehabilitation/Reconstruction; and RM= Restorative Maintenance 

The critical condition index filter is a strategy to compare the decision from the decision 

matrix with thresholds values of the CCI.  For example, the following criteria are used for 

Interstate: 

 For CCI values above 89, the treatment category is always DN. 

 For CCI values above 84, the treatment category is always DN or PM. 

 For CCI values below 60 the treatment category is at least CM, i.e., CM, RM or RC. 

 For CCI values below 49 the treatment category is at least RM, i.e., RM or RC. 

 For CCI values below 37 the treatment category is always RC. 

Several structural capacity indices were studied by the authors to select the most promising 

one to be implemented in the enhanced decision tree.  The Structural Condition Index (SCI), 

which was developed by Texas Department of Transportation, was selected to be modified 

and implemented into the VDOT enhanced decision tree.  The SCI is calculated from FWD 

measurements after being normalized to 9,000 lb. load as follows: 

SCI= (13)
 

where, 

SNEff= k1*SIPk2*Hp
k3; 

k1 = 0.4728; 

k2 = -0.4810; 

k3 = 0.7581; 
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SIP= D0-D1.5HP; and 

D0 = peak deflection under the 9,000 lb. load, and D1.5Hp = the deflection at a distance of 1.5 
times the pavement depth. 

The SCI was modified by the authors and was renamed as the Modified Structural Index 

(MSI) as shown in the following equation: 

0.4728* D0-D1.5HP
-0.481*Hp0.7581

 MSI=  (14)
0.05716 * (log(ESAL) - 2.32 * log(Mr ) 9.07605)2.36777 

where, 

D0= FWD central deflection (thousandth of an inch [mils.]); 

D1.5Hp= FWD deflection at a distance 1.5 x total pavement thickness (mils.); 

Hp = Pavement thickness (in.); ESAL = Equivalent single axle load; and 

Mr = Subgrade resilient modulus (ksi). 

An analysis was conducted to calculate the MSI from FWD measurements along Interstate I-

81, which had a length of 325 miles.  Thresholds were then defined for the MSI and were 

implemented into the enhanced decision tree taking into consideration the pavement age as 

shown in Table 11. 

Table 11 
Modified Structural Index (MSI) thresholds [2] 

Initial decision  DN PM CM RM RC 
Pavement age 
(years) 

≤ 6 ˃ 6 ≤ 6 ˃ 6 ≤ 6 ˃ 6 ≤ 6 ˃ 6 ≤ 6 ˃ 6 

M
S

I 

≥1 DN PM PM PM CM CM RM RM RC RM 
˂1 and ≥ 
0.9 

CM RM CM RM RM RM RC RC RC RC 

˂ 0.9 RM RM RM RM RC RC RC RC RC RC 

A study conducted by Tutumluer and Sarker to evaluate the use of Non-Destructive Testing 

(NDT) in evaluating pavement structural conditions as well as the use of NDT measurements 

in the design of asphalt overlays [26].  Testing was conducted by using FWD in five 

pavement sections located in two different counties in Illinois.  The Illinois Department of 

Transportation (IDOT) Dynatest FWD machine was used in the testing program with 

geophones spaced at 0, 12, 24, 36, 48, 60, and 72 in. from the center of the load.  Sections 

with high degrees of deterioration and that had been selected for rehabilitation were selected 
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for FWD testing. Every section was tested at intervals of 200 ft.; however, some stations 

were eliminated from the study as non-decreasing deflection bowls were detected.  

Upon completion of FWD testing, the deflection basin measurements were used to conduct 

backcalculation analysis of the pavement layers’ moduli [26]. A software based on Artificial 

Neural Network (ANN-Pro) was used in the backcalculation analysis.  A finite element-

based software (ILLI-PAVE FE) was then used to determine the tensile strain at the bottom 

of the asphalt layer ɛt. Thresholds for both ɛt and the surface deflection δv were then 

calculated based on the following equations: 

 
. ∗N  .  (15) 

 
. ∗N   (16) 

where, 

Nf= number of ESALs to failure. 

By comparing threshold values calculated from equations (15) and (16) with the pavement 

response due to FWD loading, the need for an overlay was assessed as shown in Table 12.  In 

addition, by conducting the FWD testing after the construction of the overlay and calculating 

the new ɛt and δv, the predicted life of the constructed overlay was estimated as shown in 

Table 13. 

Table 12 
Comparison between thresholds and FWD based measurements [26] 

Section 
Number 

Design 
ESALs 

ɛt 

threshold 
δv (mil) 
threshold 

ɛt 

FWD 
δv (mil) 
FWD 

Overlay 
required? 

1 13,524 6.36E-4 45.36 6.13E-4 46.33 Yes 
2 13,524 6.36E-4 45.36 6.06E-4 52.21 Yes 
3 13,524 6.36E-4 45.36 4.52E-4 48.47 Yes 
4 13,524 6.36E-4 45.36 5.32E-4 47.88 Yes 

Table 13 
Critical pavement response after overlay construction [26] 

Section 
Number 

ɛt 
FWD 

δv (mil) 
FWD 

Capacity > Demand 
(Design period= 20 years) 

1 4.33E-4 33.42 Yes 
2 4.44E-4 38.50 Yes 
3 4.24E-4 34.22 Yes 
4 4.56E-4 37.22 Yes 
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Artificial Neural Networks 

In this study, artificial neural network (ANN) was utilized for two purposes.  First, ANN was 

used to estimate the subgrade resilient modulus (Mr) based on RWD measurements.  Second, 

ANN was used to develop a one-step decision making tool, that takes into consideration both 

structural and functional conditions of the pavement structure.  ANNs have commonly been 

used for solving complex engineering problems in the last three decades [27].  ANNs are 

parallel computing schemes that imitate biological neural networks [28].  They are effective 

and accurate tools for solving complex nonlinear problems as they provide robust models 

that can continuously be updated as new data become available.  In addition, they can be 

used in databases with either large or relatively small amount of data [29]. 

The Feed-Forward ANN.  The most commonly used ANN structure for both 

regression analysis and supervised classification is the feed-forward model.  This model 

topology consists of an input layer (i) in which the input independent variables are 

implemented, one or more processing (hidden) layers (j), and a target (output) layer (k) in 

which the depended variables are implemented [30].  The network topology is simulating the 

biological human brain.  Each layer consists of processing units called “neurons,” and every 

neuron in a layer is connected with all neurons in the previous layer [31].  Each of these 

connections is assigned a “weight”, and each neuron is assigned a “bias.”  An example of a 

feedforward network with one hidden layer is shown in Figure 13. 

Figure 13 
Example of feed-forward neural network structures 
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ANN Back-Propagation Training Algorithm.  The process of calculating the 

weights and biases of the ANN is called the learning process or the training process.  The 

most common used training procedure is the back-propagation error optimization algorithm. 

In this procedure, random values for weights and biases are assigned to the network 

connections and neurons, respectively. The network output (y) is then calculated based on 

the randomly assigned weights and biases and compared with the target value (t) to calculate 

the error. A squared loss function is used to calculate the error as shown in the following 

equation: 

E  
 
	 t y   t f w, b, x  (17) 

where, 
E= error function; 
w= network weights; 
b= network biases; and 
x= in depended variables. 

Equation (17) is then used as an objective function that needs to be minimized in a regular 

optimization problem.  This optimization problem is solved using the Stochastic Gradient 

Descent (SGD).  In the SGD method, the weight parameters are iteratively updated in the 

direction of the error loss function until a minimum is reached.  The process of updating the 

weight parameters to minimize the error is called backpropagation.  Figure 14 illustrates the 

concept of the backpropagation algorithm. 
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Figure 14 
Back propagation algorithm 

ANN Forward Calculations.  After the network is trained, proper weights and biases 

are assigned to the network connections and neurons, respectively.  These weights and 

biases are then used by the network to conduct forward-calculation on new data.  First, the 

inputs to the hidden layer (j) are calculated by multiplying the input vector by the weight 

matrix (Wij) and adding the hidden bias vector (bj), see Figure 13. Second, an activation 

function is used to calculate the outputs of the hidden layer (j).  The output vector is then 

calculated by multiplying the hidden vector by the weight vector (W’jk) and adding the bias 

values (bk), see Figure 13. The general equation of a backpropagation algorithm-based 

neural network with one hidden layer, one output variable, and a tan-sigmoid (tansig) transfer 

function can be described as follows [32]: 

y b   ∑  tansig b 	 ∑  a W  W′ ) (18) 

where, 
k= the model output at layer k; 
nj = number of neurons in the hidden layer; 
ni = number of neurons in the input layer; and 
ai = the input variables.  
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ANN Transfer Functions. The ANN transfer function, also known as activation 

functions, are differentiable non-linear functions, applied to the weighted input of the neuron 

to produce the neuron output. By using transfer functions, ANNs acquire their non-linearity.  

On other words, without activation functions, a neural network could not learn non-linear 

relationships. The most commonly used ANN transfer functions for regression analysis 

purposes are the logistic sigmoidal function (logsig), which produces outputs between “0” 

and “+1” as shown in Figure 15, and the tan sigmoidal function (tansig), which produces 

outputs between “-1” and “+1” as shown in Figure 16.  For classification or decision 

problems, the step function “hardlim’ is the most commonly used.  The hardlim function 

forces the neuron to produce an output of “0” or “1,” which allows the network to do 

classifications or make decisions.  Equations (19) and (20) defines the logsig and tansig 

transfer functions, respectively. 

logsig x  
1

 (19)
1 e‐x 

tansig	 x  	  (20) 

1 

L
og

si
g(

x)
 

0

 Figure 15 
Logsig transfer function 
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Tansig transfer function 
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Hardlim transfer function 
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OBJECTIVES 

The objective of this study was twofold.  First, this project evaluated structural capacity 

indicators previously developed in 09-1P and their effectiveness in predicting pavement 

structural conditions based on RWD measurements.  Based on this evaluation, the research 

team introduced modifications to improve prediction of pavement structural conditions and 

to allow for screening and identifying structurally-deficient locations in pavements based on 

a 0.1-mile test interval.  Second, a methodology was developed to integrate the most 

promising structural capacity indicator into the Louisiana Pavement Management System 

(PMS) decision matrix and into overlay design.  This project also assessed the cost-efficiency 

of RWD testing in identifying and repairing structurally-deficient sections prior to reaching 

very poor conditions.   
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SCOPE 

Measurements from the comprehensive testing program of the RWD conducted by DOTD in 

2009, in District 05, were analyzed. Furthermore, the research team analyzed PMS data 

collected in District 05 from 2005 to 2013 to determine the rate of structural and functional 

deteriorations for pavements that are structurally deficient and those that are structurally 

sound. Current practices for selecting pavement maintenance and rehabilitation strategies 

were modified such that both structural and functional pavement conditions are considered in 

treatment selections and to improve the accuracy of the overlay design procedure in the state.  
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METHODOLOGY 

To achieve the study objectives, the research activities were divided into two phases.  In the 

first phase, a comprehensive review of Louisiana PMS and recent studies dealing with 

continuous deflection testing was conducted. In addition, a critical evaluation of the 

structural capacity indicators developed for RWD was performed based on the original RWD 

and FWD data sets collected in 2009 and the new PMS data collected in 2011 and 2013.  

Based on this evaluation, modifications were suggested for the most promising structural 

capacity indicator in order to improve identification of structurally-deficient sections.  In the 

second phase, a methodology was developed to incorporate the most accurate structural 

capacity indicator into Louisiana PMS and overlay design.  Further, the cost-efficiency and 

added values of RWD testing in identifying and repairing structurally-deficient sections were 

evaluated. 

Experimental Program 

RWD Testing in Louisiana 

The complete field testing program requested by DOTD consisted of two phases.  In the first 

phase, the asphalt road network (about 1,250 miles) in District 05, referred to as network 

sites, was tested using the RWD deflection system based on ARA, Inc. standard testing 

protocol. LTRC also selected 58 sections to be tested using FWD.  In the second phase, 16 

road-sections (1.5 miles each), referred to as research sites, were selected and used for a 

detailed evaluation of the RWD technology as shown in Figure 18 [14]. 

In addition to RWD testing, the test plan in Phase II included conducting FWD testing on 

selected flexible and surface treatment pavement test sites.  The testing plan specified that 

FWD testing should be conducted within 24 hours following completion of RWD testing on 

the selected sites in order to maintain the same testing conditions.  The field testing program 

for RWD and FWD was conducted successfully in December 2009 with no major problems 

during the course of the experiment [14]. 

To assess repeatability of the measurements and the effects of truck speed, triplicate runs 

were performed at different speeds of 20, 30, 40, 50, and 60 mph.  However, the test speed 

was restricted by the posted speed limits on a number of sites.  Only Site 7 was selected on 

the Interstate Highway System (I-20), which permitted testing at 60 mph.  However, testing 

at 50 mph was conducted on 8 of the 16 sites.  Road segments were also selected to represent 

different pavement conditions as described by the PCI, with varying HMA thicknesses and 

base types. Traffic volume widely varied in the selected sections from an Annual Average 

Daily Traffic (AADT) of 244 to 29,357; these traffic volumes range from low to heavy.   
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Figure 18 
Locations of the 16 research sites in District 05 [14] 

Pavement temperature was recorded in conjunction with each test.  The pavement surface 

temperature ranged from 29.3 to 69.8°F (-1.5 to 21°C) with an average temperature of 48.2°F 

(9°C) during the testing process. To assist in the analysis, pavement design of the selected 

sites was obtained using cores and construction documents.  Figure 19 shows the coring 

location for research Site 12, while Figure 20 shows the core sample for the same location, 

which provided accurate information about layer types and thicknesses.  In addition, the test 

plan included supportive measurements, such as roughness, pavement temperature, and 

distress survey for the selected sites. 

Figure 19 
Coring test section Site 12 [14] 
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Figure 20 
Core sample Site 12 [14] 

FWD Testing in Louisiana 

Nondestructive FWD deflection testing was conducted to measure the load response 

characteristics of the pavement layers and subgrade.  Deflection testing was performed in 

accordance with ASTM D 4694, “Standard Test Method for Deflections with a Falling 

Weight-Type Impulse Load Device” and D 4695, “Standard Guide for General Pavement 

Deflection Measurements.”  The FWD device shown in Figure 21 was configured to have a 

9-sensor array, with sensors spaced at 0, 8, 12, 18, 24, 36, 48, 60, and 72 in. from the load 

plate. Three load levels of 9,000, 12,000, and 15,000 lb. were used in the FWD deflection-

testing program.  The FWD testing was conducted at a frequency of 0.1 mile with the testing 

location selected in the middle of the interval used in RWD testing.  As previously noted, 

FWD tests were conducted within 24 hours of RWD testing on the outer wheel path [14]. 

Figure 21 
Illustration of the FWD test device used in the testing program [14] 
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RWD Data Processing and Filtering 

During RWD testing, laser deflection readings are measured at 0.6-in. intervals.  Irrelevant 

data such as measurements collected on top of a bridge, sharp horizontal and vertical curves, 

and at traffic signals were removed.  Erroneous data may also be obtained if the pavement 

surface is wet or in areas with severe cracking at the pavement surface. Valid deflection 

measurements were then averaged for two primary reasons: (a) minimizing the truck 

bouncing and vibration effects on the measured deflections and (b) decreasing the data to a 

manageable file size.  After the averaging process is complete, deflections are normalized to 

a standard temperature of 68˚F for sound comparison between data collected at different 

times of the day.  Figure 22 presents the raw data collected on Site 9 by the four laser sensors 

[14]. 

Figure 22 
Example of individual laser readings and deflections for Site 9 (315-02), LA 143 north 

of West Monroe (after ARA, Inc.) 

MnROAD Testing Program 

The present study made use of RWD data collected on the MnROAD testing facility for 

validation of the subgrade modulus of resilience model based on independently-collected 

data. The data were collected in 2013 during a comprehensive pavement deflection testing 

program conducted at the MnROAD facility in Minnesota [33].  The surveyed road network 
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consists of a 3.5-mile mainline roadway (ML) with 45 sections and with “live traffic” as part 

of Interstate 94 near Albertville, Minnesota.  In addition, a 2.5-mile closed-loop low volume 

roadway (LVR) consisting of 28 sections was also surveyed; the section lengths were 

typically about 500 ft. In addition to the test sections along the mainline and low volume 

road of the MnROAD, an 18-mile segment in Wright County was also tested.  The segment 

is located about 20 miles from the MnROAD facility and was divided into nine sections.  An 

overview of the facility is shown in Figure 23. 

Figure 23 
Overview of the MnROAD facility 

Testing was conducted using the Traffic-Speed Deflectometer (TSD), RWD, and the Euro-

consult Curvimeter; see Figure 24 [33].  FWD was used as a reference for comparison and 

evaluation purposes. Tested sections varied between flexible pavements, rigid pavements, 

and composite pavement sections.  Yet, the present study focused on RWD measurements; 

therefore, only RWD and FWD data collected on flexible pavements were considered.  The 

flexible pavement test segments at which both FWD and RWD measurements were 

conducted consisted of 16 sections; six in the main line and 10 in the low volume roadway.   
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Figure 24 
MnROAD continuous deflection testing program [33] 

Assess the Accuracy of the Developed Structural Capacity Indicators 

The objective of this task was to analyze and evaluate the accuracy of the structural capacity 

indicators previously developed as part of Project 09-1P based on RWD testing.  To achieve 

this objective, the research team evaluated the structural deterioration of the sections that 

were predicted to be structurally-deficient based on the structural capacity indicators by 

analyzing the core samples and FWD measurements.  In addition, the research team 

compared the PMS data collected in 2013 in terms of structural distresses including cracking 

(e.g., fatigue) and rutting to the PMS data collected in 2009 to assess the levels of structural 

deterioration in these sections and whether identified sections were truly structurally-

deficient. Further, an analysis of variance (ANOVA) was conducted between the structural 

indicators and the surface performance indices in order to assess which indicators are mostly 

dependent on pavement surface conditions.  Based on this analysis, the research team 

assessed the prediction accuracy of the structural capacity indicators originally developed 

based on RWD testing. 

RWD-Based Pavement Structural Capacity Indicators 

During the original study, the research team observed that RWD describes the deterioration 

of the pavement structure through both an increase in the magnitude of the deflection and an 

increase in the scattering and variability of the deflection measurements.  Elseifi and co-

authors introduced a parameter known as the RWD Index (RI) based on the average RWD 

deflection and the standard deviation for a 1.5-mile test interval [18]: 

                           RI = Avg. RWD deflection * Std. Dev. of RWD deflection  (21) 

where, 

RI = RWD Index (mm2 or mils2); 
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Avg. RWD deflection = average deflection (mm or mils) measured on a road segment with a 
length of 1.5 miles; and 

Std. Dev. of RWD deflection = standard deviation (mm or mils) of average RWD deflections 
in 1.5-mile test interval. 

The RI index correlated reasonably well with the effective pavement structural number 

(SNeff) determined from FWD.  Since RWD measurements are based on 0.1 mile of 

pavement segment, the zone RWD Index (ZRI) was introduced with a new definition of a 

structural index based on RWD data, which was defined as follows: 

                              ZRI = average RWD deflection * fourth root of variance  (22) 

where, 

ZRI is in mm3/2 or mils3/2 and the average of deflection and variance are based on the 0.1-mile 
pavement segment. 

Based on the RI index and various expressions evaluated during the course of the original 

study (09-1P), the following relationship between SN- and RWD-measured parameters was 

introduced: 

SN   6.37  
. ∗ .

 23.52RWD .   1.39 ln SD 													 (23)
.  

where, 

RI = RWD Index (mils2) = Avg. RWD deflection * SD of RWD deflection; 

SD = standard deviation of RWD deflection on a road segment (mils); 

RWD = Avg. RWD deflection measured on a road segment (mils); and 

SNRWD = Pavement Structural Number based on RWD measurements.  

Propose Modifications to the Most Promising Structural Capacity Indicator  

Based on the results of the previous task, the most promising structural capacity indicator 

was selected to detect structurally-deficient pavements based on RWD testing.  In this task, 

RWD measurements were analyzed further to improve prediction and to ensure that the 

maximum accuracy would be achieved through these measurements.  To achieve this 

objective, the research team evaluated the assumptions made in the development of equations 

(21) to (23) and modified the original model to improve prediction accuracy and to allow for 

assessing pavement structural conditions every 0.1 mile.  In this analysis, pavements were 

categorized based on thickness, type of base layer, and traffic volume during service.  The 
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main outcome of this task was an updated structural capacity indicator that can be used to 

identify structurally deficient pavements based on RWD testing and at a 0.1-mile test 

interval.  

Develop a Structural Index Based on Backcalculated Layer Moduli 

The objective of this task was to develop a structural index (from 0 to 100) that describes the 

structural integrity of pavement sections based on the backcalculated AC layer moduli of in-

service pavements as predicted from FWD testing.  To achieve this objective, FWD-collected 

data were used in a backcalculation process; the backcalculation software, ELMOD 6, was 

used based on the equivalent thickness method.  The backcalculated moduli were correlated 

and categorized statistically to establish a structural index that ranges from 0 to 100 in which 

100 describes perfect structural conditions and 0 describes a totally damaged pavement 

structure. The developed index may be incorporated into Louisiana PMS to describe 

pavement structural conditions based on FWD measurements and to guide in the selection of 

appropriate treatment strategies.  

Falling weight deflectometer measurements from 52 in-service pavement sections with a 

total length of approximately 320 miles were used to develop the structural index.  

Furthermore, Ground Penetrating Radar (GPR) data were used in this task for pavement 

thickness information.  In addition to GPR testing, core samples were used to detect any 

materials deterioration underneath the pavement surface.  At least one core sample was 

available from each homogenous control section.  Core samples were also used to determine 

the type of base layer used in the pavement structure; this was beneficial to ensure the 

accuracy of the backcalculation process in case of the presence of a cement-treated base 

layer. 

Compare Rate of Deteriorations for Pavement Sections 

In this task, the research team analyzed PMS data collected in District 05 from 2005 to 2013 

to determine the rate of structural and functional deteriorations for pavements that are 

structurally deficient and those that are structurally sound.  Based on this analysis, the 

research team determined whether the rates of deterioration are significantly different for 

pavements that are structurally deficient and those that are structurally sound.  Results of this 

analysis were used in the subsequent tasks to assess cost-efficiency of RWD testing and the 

added values of identifying structurally deficient pavements to the State PMS.  In light of this 

analysis, the research team assessed whether the identification of structurally deficient 

pavements at an early stage of deterioration may save state funds by addressing this 

deterioration early in the pavement service life. 
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To compare pavement levels of deterioration, the research team categorized the tested road 

segments into five categories based on structural conditions (e.g., excellent, good, fair…etc.).  

The categorization process was based on thresholds obtained from the developed structural 

capacity indicators.  For each category, the PMS data at years from 2005 to 2013 were 

evaluated. Segments, which showed an increase in one or more of the performance indices 

during the analysis period, were eliminated since it indicates that a treatment has been 

applied on these segments.  In addition, to offset the traffic volumes effect on the level of 

deterioration; segments were divided according to their functional class (e.g., arterials, 

collectors, etc.), then each class was studied separately.        

Conduct an Overlay Design for the Selected Pavement Sections  

Based on the data collected in previous tasks, and in the RWD testing program, the research 

team conducted an overlay design of selected pavement sections.  These sections included 

structurally-deficient and structurally-sound pavement sections in District 05.  The objective 

of these overlay designs, which were based on RWD measured deflections, was to quantify 

the difference in overlay thickness if RWD measurements are considered in the design 

process. 

The overlay design was conducted according to DOTD current design practices and based on 

the assumptions of a 10-years design life and 2-in. milling.  The proposed design procedure 

considered the actual pavement structural capacity based on RWD measurements and 

compared the obtained designs with current practices adopted by DOTD office of design, 

which assumes 50% loss in structural capacity.   

Investigate the Feasibility of Predicting the Subgrade Modulus from RWD Data 

In this task, the two RWD deflection measurements (D0 and D18) were used to develop an 

artificial neural network (ANN) model to predict the subgrade modulus.  The correlation 

between the proposed ANN model and the AASHTO 1993 FWD-based model were 

evaluated: 

M   
. ∗

 (24)
∗

where, 
Mr = backcalculated subgrade-resilient modulus (psi);  
P = applied load (pounds); and 
dr = deflection at a distance r (in) from the center of the load (in). 
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Determine Cost Efficiency and Added Values of RWD Testing 

The objective of this task was to evaluate the cost-efficiency of using RWD measurements in 

PMS activities at the network level and the benefits that may be obtained by adopting this 

test method in Louisiana.  To achieve this objective, monetary savings obtained by providing 

for the most cost effective rehabilitation treatment methods were compared against the cost 

of collecting and analyzing RWD deflection data.  Data needed in the cost-analysis were 

obtained from the analysis conducted in the previous tasks and by querying existing 

databases in the Louisiana PMS. Current state of practice was compared to an improved 

treatment selection strategy developed based on RWD measurements and existing PMS 

indices. 

Develop a One-Step Enhanced Decision Making Tool 

The objective of this task was to develop a one-step enhanced decision-making tool that 

considers both structural and functional pavement conditions in treatment selection at the 

network level. To achieve this objective, an artificial neural network-based pattern 

recognition system was trained and validated using pavement condition data and RWD 

measurements-based SN to arrive at the most optimum maintenance and rehabilitation 

(M&R) decisions. The developed tool needed to be time-efficient and easy to use since it 

will be adopted by PMS engineers to determine the final enhanced M&R decisions (which 

requires several analysis steps) based on RWD measurements and the modified overlay 

design procedure. 
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DISCUSSION OF RESULTS 

Accuracy of Structural Capacity Indicators 

Pavement structural capacity was predicted based on RWD measurements using the 

indicators presented in equations (21) to (23).  RWD data from 188 control sections in 

District 05 were considered in this analysis with a total length of 1,066 miles.  The center 

deflection (D0) was the main input used from RWD measurements.  Performance indices 

were also extracted from PMS, namely, the Alligator Cracking Index (ALCR), the Rutting 

Index (RUT), the Roughness Index (RUFF), the Random Cracking Index (RNDM), the 

Patching Index (PTCH), and the overall Pavement Condition Index (PCI). 

To assess whether the structural capacity indicators are affected by pavement surface 

conditions; data from the 188 control sections were categorized into three groups according 

to the AC layer thickness: thin, which includes pavements with AC thickness less than 3 in., 

medium with AC thickness from 3 to 6 in., and thick sections with AC thickness more than 6 

in. as shown in Table 14. 

Table 14 
Control sections classification according to AC thickness 

Pavement Characteristics Group 1 Group 2 Group 3 
Pavement Class Thin Medium Thick 
AC Thickness range (in.) ˂3 From 3 to 6  ˃6 
Number of control sections 34 77 77 
Total length (miles) 194 548 324 

Statistical Analysis 

An Analysis of Variance (ANOVA) was conducted on the aforementioned road categories to 

assess the influence of each pavement performance index on the structural capacity 

indicators. Results of the analysis are presented in Tables 15 to 17.  Statistical analysis was 

conducted at a 95% confidence level such that a P-value less than 0.05 indicates significant 

correlation. As shown in these tables, the ZRI was the structural capacity indicator that 

correlated the most with pavement performance surface indices.  On the other hand, the SN 

did not correlate with most pavement performance surface indices.  A low correlation is 

desirable as it indicates that a structural capacity indicator provides useful information, which 

is not already available from the existing pavement performance surface indices. 
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Table 15 
ANOVA results for thin sections 

Indicator 

SN 
RI 
ZRI 

Indicator 

SN 
RI 
ZRI 

Indicator 
Ruff 

SN 0.1190 
RI 
ZRI 

Ruff 
0.1524 

Ruff ALCR 
<.0001 0.7 
<.0001 0.03 
<.0001 0.70 

ALCR 
0.1029 
0.1810 

ALCR 
0.4618 

Table 16 
ANOVA results for medium sections 

RUT PCI 
0.2 0.01 
0.02 0.001 
0.07 0.052 

Table 17 
ANOVA results for thick sections 

Performance Indices 
RUT PCI 
0.5050 0.5206 
0.3475 0.5157 

Performance Indices 
RUT PCI RNDM 
0.6286 0.6440 0.4223 

Performance Indices 
RNDM 
0.6 
0.3 

PTCH 

PTCH 
0.01 
<.0001 

0.0022 <.0001 

RNDM PTCH 
0.8393 0.0711 
0.8428 0.6018 

0.0195 
0.3534 0.5348 0.5771 0.9250 0.0628 0.0528 
<.0001 0.02 <.0001 0.30 <.0001 <.0001 

0.0002 
<.0001 0.3145 0.0182 0.0008 <.0001 <.0001 

Uniformity Index 

To evaluate the uniformity of each structural capacity indicator, the Uniformity Index (UI) 

was calculated for each control section for the ZRI, SN, and RI according to equation (25).  

The average uniformity coefficient was calculated to be 82% for the SN model, 69% for the 

RI, and 62% for the ZRI. The uniformity distributions are shown in Figures 25 to 27 for the 

three structural capacity indicators. 

UI% 1   (25) ∗ 100		 

where, 

SD = standard deviation of the indicator for every control section; and 

AVG = Mean value of the indicator for every control section.  

Since the road network in Louisiana PMS is divided into control sections such that each 

section has similar characteristics (i.e., traffic volume, pavement structure, and subgrade 
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type), variation of the structural conditions within the same control section is expected to be 

negligible.  Therefore, a suitable structural capacity indicator is expected to have a high 

uniformity index within the same control section.  As shown in Figures 25 to 27, the SN 

model had the most uniform prediction within the evaluated control sections, followed by the 

RI, and finally the ZRI. 
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Figure 25 
Uniformity histogram for SN 
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Figure 26 
Uniformity histogram for RI 
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Figure 27 
Uniformity histogram for ZRI 

Identification of Structurally Deficient Sections 

To assess the relationship between the structural capacity indicators and in-situ pavement 

structural conditions, core samples and pavement condition data were analyzed for the 

lowest-ranked sections according to each approach. These sections were the 20% control 

sections that have the lowest SN, the 20% sections that have the largest RI, and the 20% 

control sections that have the largest ZRI. The thresholds for structurally deficiency were 

estimated from the cumulative distribution functions for each structural capacity indicator.  

Table 18 presents the calculated thresholds for each indicator.  An example of determining 

the ZRI threshold for thin sections is presented in Figure 28. 

Table 18 
 Limiting thresholds for the three structural capacity indicators 

Category SN RI ZRI 
Thin 2.40 125.7 196 
Medium 2.74 110.5 176 
Thick 3.10 87.5 150 
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Figure 28 
 ZRI cumulative distribution function for thin sections 

Using the thresholds presented in Table 18, the average values of the functional surface 

indicators for sections considered structurally-deficient were calculated and are shown in 

Tables 19 to 21. As shown in these tables, structurally deficient sections were in some cases 

in pavements with good surface conditions.  These results support the need to implement a 

pavement structural condition indicator into PMS in addition to the current functional 

indices. A list of identified pavement sections is presented in Appendix A.  It is worth noting 

that the sections considered deficient according to SN were almost the same as the sections 

considered deficient according to RI.     

Table 19 
Averages performance indices for sections below 20% SN thresholds 

ALCR RUT RUFF RNDM PTCH PCI 
Thin 83.70 90.95 62.60 87.88 79.76 68.54 
Medium 79.36 92.64 69.28 84.62 79.41 69.75 
Thick 89.68 85.83 76.11 90.76 90.53 77.40 

Table 20 
 Averages performance Indices for sections above 20% RI thresholds 

ALCR RUT RUFF RNDM PTCH PCI 
Thin 83.73 90.94 62.63 87.88 79.76 68.53 
Medium 82.25 92.77 70.87 85.77 81.51 71.90 
Thick 89.68 85.84 76.11 90.76 90.53 77.40 
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Table 21 
Averages performance Indices for sections above 20% ZRI thresholds 

ALCR RUT RUFF RNDM PTCH PCI 
Thin 75.23 91.48 66.26 82.85 74.74 65.73 
Medium 80.46 95.57 77.02 84.97 94.47 76.50 
Thick 92.16 85.60 77.83 94.40 98.44 81.06 

Investigation of Cores 

Table 22 categorizes structurally-deficient sections into three groups.  Group 1 includes 

sections that were classified as deficient based on the three structural capacity prediction 

approaches (i.e., SN, RI, and ZRI). Group 2 includes sections that were classified as 

deficient by only the SN and RI approaches, and Group 3 includes sections that were 

classified as deficient by only the ZRI. Cores’ conditions were correlated to the three groups 

to assess whether a section is either structurally deficient or structurally-sound. 

Table 22 
Sections classifications for core samples study 

Group ID SN RI ZRI 
1 Deficient Deficient Deficient 
2 Deficient Deficient Sound 
3 Sound Sound Deficient 

Group 1. This group includes sections that were classified as structurally deficient 

based on the three indicators. Investigation of core samples indicated that 85% of the 

sections in this group suffered from major to medium stripping in one or more of the AC 

layers, as shown in Figure 29. 

Figure 29 
 Example of severe stripping in control section 161-08 
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Group 2.  This group includes sections that were determined to be structurally 

deficient based on the SN and the RI approaches but not by the ZRI.  Investigation of core 

samples showed that 60% of the sections in this group suffered from major to medium 

stripping in one or more of the AC layers as shown in Figure 30.  This indicates that the SN 

and RI approaches successfully identified these sections as structurally-deficient. 

Figure 30 
Example of AC stripping in control section 831-06 

Group 3.  This group includes sections that were classified as structurally deficient 

based on the ZRI approach only. Investigation of core samples showed that only 18% of the 

sections in this group suffered from medium stripping in the AC layers; however, the 

majority of the sections were in good conditions as shown in Figure 31.  These results 

indicated that the ZRI approach did not successfully identify structurally deficient sections. 

Figure 31 
 Example of core sample in good structural conditions (Section 182-01) 
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Selection of the Most Promising Indicator 

According to the ANOVA results, the ZRI was found to be significantly affected by 

pavement surface conditions.  In addition, the uniformity index analysis indicated that the 

ZRI was the indicator with the lowest uniformity (62%).  Furthermore, investigation of the 

core samples showed that the ZRI did not successfully identify pavement structural 

deficiency in some of the sections.  Therefore, the ZRI was not considered in the rest of the 

analysis. 

Investigation of the core samples indicated that the RI and the SN were the most promising 

indicators to detect pavement structural deficiency; yet, sections considered deficient 

according to the SN thresholds were found to be the same sections as those considered 

deficient according to the RI thresholds.  Therefore, either one of these two indicators would 

be acceptable.  Since the in-service SN is a key input in the AASHTO 1993 overlay design 

approach, it was considered as the most promising indicator, and was, therefore, selected for 

further modifications. 

Propose Modifications to the SN Model  

The SN model showed an acceptable accuracy in identifying pavement structural deficiency; 

however, the main shortcoming of the model is that it predicts the SN at 1.5-mile intervals.  

Obtaining an average SN value every 1.5-mile prevented identifying structurally deficient 

locations in shorter pavement segments.  Additionally, the model was found to over-estimate 

SN in thin sections.  The main objective of this task was to develop an improved statistical 

model to predict pavement SN every 0.1 mile based on RWD measurements. 

Model Development 

A new model was developed based on RWD and FWD measurements obtained from 12 

different road segments distributed equally on the predefined three thickness categories, 

Table 14 (thick, medium, and thin).  The AC layer(s) thickness and the Annual Average 

Daily Traffic (AADT) were found to have significant effects on the pavement SN with P-

values of 0.0039 and less than 0.0001, respectively. Therefore, both factors were included in 

the new model.  It is noted that the total pavement thickness was considered in the model but 

it was not found to improve prediction accuracy.  The SAS 9.4 software was used in fitting 

the new model, which was defined as follows [34]: 

0.04695 
SNRWD0.1= -14.72+27.55* 

ACth -2.426* ln SD+0.29* ln ADTPLN  (26)
D0 

where, 
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ACth = Asphalt concrete layer(s) thickness of the pavement structure (in.); 

D0 = Avg. RWD deflection measured each 0.1 mile (mils.); 

SD = Standard deviation of the RWD deflection each 0.1 mile (mils.); 

ADTPLN= Average Annual Daily Traffic per lane (Vehicle/day); and 

SNRWD0.1 = Structural Number based on RWD measurements for 0.1 mile interval.   

Figure 32 presents the fitting of the model during the development phase.  As previously 

noted, the main advantage of the modified model is that it allows the estimation of the 

pavement structural number at 0.1-mile interval of the road segment (SNRWD0.1). The 

SNRWD0.1 was validated based on 25 road sections, which were not used in the development 

phase with a total length of 45.5 miles.  As shown in Figure 33, the modified model 

demonstrated a reasonable accuracy with a Root Mean Square Error (RMSE) of 0.8 and a 

coefficient of determination (R2) of 0.76 in the validation phase.  Figure 34 compares the SN 

predicted from FWD based on the 1993 AASHTO method to the SN predicted from RWD 

measurements based on the new model, equation (26).  As shown in this figure, there was a 

relatively good agreement between the two approaches indicating that the modified model 

can be effectively used to predict SN at an interval of 0.1-mile [34]. 
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Figure 32 
SNRWD0.1 model development 
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Figure 34 
SNRWD0.1 vs. SNFWD longitudinal profile 

 

Sensitivity Analysis 

The sensitivity of the modified model to the various input parameters was evaluated.  In this 

analysis, each of the input parameters was varied, and the change in the predicted SNRWD0.1 

was calculated.  The average value for each parameter in the model was used as a baseline, 

and each parameter was varied between the minimum and maximum values as shown in 

Table 23. 
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Table 23 
Sensitivity analysis of SN model to variation in input values 

Parameter ACth (in.) D0 (mils) SD (mils) ADT veh/day 
Baseline 5.6 16.5 65 970 
Max. value 2.0 50 20 5050 
Min. value 12.0 1 140 50 

Figure 35 presents the change in SN associated with a change in the different input 

parameters from the minimum to the maximum values.  Results of the sensitivity analysis 

indicated that the SNRWD0.1 was the most sensitive to D0 (RWD Deflection) and the deflection 

standard deviation (SD), and was the least sensitive to traffic daily volume (ADT) and AC 

thickness (ACth). 
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Figure 35 
Sensitivity analysis for the SNRWD0.1 model 

Model Efficiency and Characteristics 

While the accuracy of the model has been demonstrated through the previous analysis, it was 

unclear whether the model is able to identify structurally deficient pavements as opposed to 

functionally deficient pavements, which could already be identified using conventional 

functional indices in the State PMS.  In this part of the study, the model’s ability to identify 

structurally-deficient pavements was investigated.  Surveyed road sections were used to 

study the efficiency of the SNRWD0.1 model in identifying structurally deficient pavements.   
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Road sections were divided into six categories according to the AC layer(s) thickness and to 

the type of base layer (treated or untreated).  The treated category mostly included sections 

that were cement-treated as this technique is widely used to address poor soil conditions in 

the State. Road segments were also classified into three categories based on the Pavement 

Condition Index (PCI). Road sections with an average PCI less than 65 were considered in 

the poor category; the fair category included road sections with an average PCI greater than 

65 and less than 85, and sections with an average PCI greater than or equal to 85 were 

considered in the good category. 

Variation with ALCR and PCI. The SNRWD0.1 was calculated for each 0.1-mile 

interval for the 153 road sections; the average value along the section was then calculated for 

each road segment.  The average SNRWD0.1 for each road category was calculated to study its 

variation from one road category to another.  Figure 36 shows that the average SNRWD0.1 for 

the sections in the “Poor” category was not consistently lower than the average SNRWD0.1 for 

sections in the “Fair” category. Similarly, sections in the “Good” category commonly had 

SNRWD0.1 average values higher than those in the “Fair” and the “Poor” categories; however, 

this was not applicable to all road segments indicating that the trend between structurally-

deficient and functionally-deficient is not definitive.  A similar observation was detected for 

the ALCR categories as shown in Figure 37. The trends presented in this analysis indicate 

that SNRWD0.1 is not fully correlated to the functional conditions of the roadway surface.  It is 

noted that there were no thick treated sections in poor conditions in the PCI analysis as 

shown in Figure 36. In addition, there were no thick treated sections in poor or fair 

conditions in the ALCR analysis as shown in Figure 37.   
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Figure 36 
Average SNRWD0.1 values for each PCI category1 

1 no thick-treated sections in the poor category. 
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Figure 37 
Average SNRWD0.1 values for each ALCR category1 

1 No medium-treated, thick-untreated, and thick-treated sections in the poor category and no 
thick-treated sections in the fair category. 

ANOVA. An Analysis of Variance was conducted on the aforementioned road 

categories to assess the effect of each of the pavement performance indicators (RNDM, 

ALCR, PTCH, RUFF, RUT, and PCI) on the SNRWD0.1. As shown in Table 24, the ANOVA 

analysis indicated that in three out of the six categories, the SNRWD0.1 had significant 

correlation with the PCI, while in the other three categories, it was not correlated to the PCI.  

Therefore, one may assume that considering a structurally-based index such as SNRWD0.1 

would allow for the identification of additional road segments that are in need of repair 

and/or maintenance and that are not currently identified by the functional indices.  This 

assumption was further investigated by analyzing surveyed road segments and the extracted 

cores from these sections. 

Table 24 
SNRWD01 results of the ANOVA analysis 

Category 
Indices 

No of 
points 

Pr > |t| 

RNDM ALCR PTCH RUFF RUT PCI 
Thin (untreated) 2640 0.7272 0.0454 0.0673 0.0749 0.0289 0.0318 
Thin (treated) 1860 0.5913 0.5603 0.0557 0.3088 0.5214 0.1172 
Medium (untreated) 3750 0.4504 0.9082 0.7949 0.2556 0.3758 0.5168 
Medium (treated) 3750 0.1964 0.0660 0.0084 0.0057 0.0563 0.0131 
Thick (untreated) 3490 0.0151 0.3883 0.0254 0.0050 0.0253 0.0349 
Thick (treated) 1710 0.2001 0.6144 0.2955 0.4027 0.1841 0.2489 
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Define SNRWD0.1 Thresholds 

In order to identify structurally deficient sections for different pavement layers’ thicknesses, 

the original (design) SN was calculated for each road segment using equation (27).  Road 

segments that exhibited a drop of 50% or more from the design SN were considered 

structurally-deficient and were selected for more detailed analysis. 

SN= a1*D1+a2*m2*D2+ a3*m3*D3 (27) 

where, 

a1, a2, and a3 = structural layer coefficients for the asphalt layer, base layer, and subbase layer, 
respectively as defined by the design office in DOTD; 

D1, D2, and D3 = layer thicknesses (in.) for the asphalt layer, the base layer, and the subbase 
layer, respectively; and 

m2 and m3 = drainage coefficients for the base layer and the subbase layer, respectively. 

The a1 value was set to be 0.42, the a2 values were set to be 0.14 for treated base and 0.07 for 

untreated base. The a3 values were set to be 0.11 for cement-treated subbase, and 0.04 for 

untreated subbase. These values are consistent with DOTD pavement design procedure.  The 

m2 and m3 coefficients were considered to be equal to 1.0 in all cases. 

Analysis of Structurally Deficient Sections 

Twenty-three sections were observed to have a drop of 50% or more from the design SN 

(i.e., SNRWD0.1 ≤ 50 % of the design SN) and were selected for a comprehensive core 

examination.  In the following, one road segment from each category of the predefined six 

categories is presented; a summarized analysis is then presented for all road sections. 

Control Section 333-01 (LA 582). This road section is located in West Carroll Parish 

and was constructed in 1982; it has an AADT of 450.  The section had a length of 5.8 miles 

and the pavement structure consisted of four AC layers with a total thickness of 7 in. and a 

12 in. treated sandy clay base layer on top of a clay subgrade.  A chip seal maintenance was 

conducted in 2005. At the location of the core, the PCI was 87 and the average PCI along the 

section was 91.4. At the location of the core, SNRWD0.1 was 1.64 and the average SNRWD0.1 

along the section was 1.48. Given a reduction of 70% in structural capacity, this section was 

considered to be structurally-deficient. Upon examination of the core, stripping in the AC 

layer was detected in the two bottom AC layers; see Figure 38(a).  While this section was 

categorized by the PCI as in very good conditions, this road is structurally deficient as 

identified by the SN calculated from RWD. 
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Control Section 818-08 (LA 881). This road section is located in East Carroll Parish 

and was constructed in 1981 with an AADT of 340.  The section had a length of 5.7 miles, 

and the pavement structure consisted of 6.75 in. AC layer and 11 in. crushed gravel with sand 

base layer on top of a clay subgrade. Two cores were extracted at two different locations.  At 

the first location, the PCI was 68 and the SNRWD0.1 was 1.9, and at the second location, the 

PCI was 74.5 and the SNRWD0.1 was 1.8. The average PCI for the entire section was 61.4 and 

the average SNRWD0.1 was 1.88.  Given a reduction of 58% in structural capacity, this section 

was considered to be structurally-deficient. Upon examination of the core, severe stripping 

in the AC layer was detected as only 2 in. out of 6 in. were recovered, see Figure 38(b).  This 

road was structurally and functionally-deficient as identified by the SN calculated from RWD 

and the PCI. 

Control Section 834-12 (LA 134). This road section is located in Morehouse Parish 

and has an AADT of 400.  The section had a length of 9.6 miles and the pavement structure 

consisted of 5 in. of AC and a 12 in. treated granular base layer on top of a clay subgrade.  A 

chip-seal was applied in 2007 and was the last treatment applied on the section.  At the 

location of the core, the PCI was 94 and the average PCI along the section was 91.6.  At the 

location of the core, SNRWD0.1 was 1.1 and the average SNRWD0.1 along the section was 2.2. 

Given a reduction of 52% in structural capacity, this section was considered to be 

structurally-deficient. Upon examination of the core, severe stripping in the AC layer was 

detected as only 1.2 in. was recovered out of the 5 in. layer, see Figure 38(c).  While this 

section was categorized by the PCI as in very good conditions, this road is structurally-

deficient as identified by the SN calculated from RWD. 

Control Section 164-02 (LA 577). This road section is located in Madison Parish and 

was constructed in 1985 with an AADT of 290.  The section had a length of 15.6 miles and 

the pavement structure consisted of two AC layers with a total thickness of 5 in. and a 14 in. 

treated granular base layer on top of a clay subgrade.  An overlay was applied in 2002. At 

the location of the core, the PCI was 72 and the average PCI along the section was 71.  At the 

location of the core, the SNRWD0.1 was 1.84 and the average SNRWD0.1 along the section was 

1.86. Given a reduction of 53% in structural capacity, this section was considered to be 

structurally-deficient. Upon examination of the core, severe stripping in the AC layer and 

failure in the base layer were detected; see Figure 38(d).  While this section was categorized 

by the PCI as in a fair condition, this road is structurally-deficient as identified by the SN 

calculated from RWD. 
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Control Section 831-04 (LA 822). This road section is located in Lincoln Parish and 

was constructed in 1959 with an AADT of 144. The section had a length of 6.6 miles and the 

pavement structure consisted of two AC layers with a total thickness of 2 in. and a 14 in. 

granular base layer on top of a sand subgrade. At the location of the core, the PCI was 51 

and the average PCI along the section was 60.  At the location of the core, the SNRWD0.1 was 

0.63 and the average SNRWD0.1 along the section was also 0.63.  Given a reduction of 78% in 

structural capacity, this section was considered to be structurally-deficient.  Upon 

examination of the core, stripping in the AC layer was detected, see Figure 38(e).  This road 

is structurally and functionally-deficient as identified by the SN calculated from RWD and 

the PCI. 

Control Section 308-04 (LA 507). This road section is located in Lincoln Parish and 

with an AADT of 1,200.  The section had a length of 7.8 mi. and the pavement structure 

consisted of 3 in. AC and a 9 in. treated granular base layer on top of a sandy clay subgrade.  

A chip seal was applied in 2006. At the location of the core, the PCI was 89 and the average 

PCI along the section was 77. At the location of the core, SNRWD0.1 was 1.55 and the average 

SNRWD0.1 along the section was 1.56. Given a reduction of 63% in structural capacity, this 

section was considered to be structurally-deficient. Upon examination of the core, stripping 

in the AC layer and debonding between the asphalt layer and the base layer were detected; 

see Figure 38(f). While this section was categorized by the PCI as in a fair condition, this 

road is structurally-deficient as identified by the SN calculated from RWD 

(a) Route LA 582 

(b) Route LA 881 
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(c) Route LA 134 

(d) Route LA 577 

(e) Route LA 822 

(f) Route LA 507 

Figure 38 
Cores samples and its locations for structural deficient sections 

Summary of the Core Analysis 

A total of 23 road sections were found to have more than 50% loss in structural capacity.  As 

shown in Figure 39(a), AC stripping was the most common distress in the sections with a 

noticeable drop in SN (SNRWD0.1 ≤ 50% of the design SN).  As shown in Figure 39(b), only 

26% of those sections were in the “Poor” category according to the PCI indicating that 

considering a structural-based index would allow identifying these sections as structurally-

deficient.  Currently, structurally-deficient sections that are classified in the “Fair” or “Good” 

categories by the PCI are not identified as in need of maintenance and/or rehabilitation. 
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■ Asphalt stripping ■ Base failure • Debonding ■ No distress ■ poor (PCI) ■ fair (PCI) good (PCI) 

(a) (b) 

Figure 39 
(a) Cores observations summary (b) distribution according to PCI 

Develop a Structural Index Based on Backcalculated Moduli 

The objective of this task was to develop a structural condition index, known as the 

Structural Health Index (SHI), on a scale from zero to 100 that describes the structural 

integrity of in-service pavements based on the backcalculated layer moduli as predicted from 

FWD testing.  To achieve this objective, FWD-collected data were used in a backcalculation 

process; the backcalculation software, ELMOD 6, was used based on the deflection basin 

method.  The backcalculated moduli were then correlated and categorized statistically to 

establish a structural index that ranges from zero to 100 in which 100 describes perfect 

structural conditions of the pavement structure.  The developed index may be incorporated 

into Louisiana PMS to describe pavement structural conditions based on FWD measurements 

and to guide in the selection of appropriate treatment strategies. 

FWD Testing 

Fifty-two in-service pavement sections with a total length of approximately 320 mi. located 

in District 05 of Louisiana were tested [18].  Nondestructive FWD deflection testing was 

conducted to measure the structural capacity of in-service pavements and to backcalculate the 

elastic moduli of the pavement layers and subgrade.  Deflection testing was performed in 
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accordance with ASTM D 4694, “Standard Test Method for Deflections with a Falling 

Weight-Type Impulse Load Device” and D 4695, “Standard Guide for General Deflection 

Measurements.” The FWD device was configured to have 9-sensor-array with sensors spaced 

at 0, 8.0, 12.0, 18.0, 24.0, 36.0, 48.0, 60.0, and 72.0 in. from the center of the load plate [35]. 

FWD testing was conducted at an interval of 0.1 mi. in the right wheel path and was not 

conducted on top of the cracked areas resulting in 1,107 test locations. Three load levels of 

9,000, 12,000, and 15,000 lbs. were used in the FWD deflection-testing program.  Pavement 

temperature was recorded in conjunction with each test. 

Backcalculation Analysis 

The first step toward developing a pavement structural index was to conduct the 

backcalculation analysis using FWD data collected on the aforementioned test sections.  The 

Dynatest software ELMOD 6 was used in this study to perform the backcalculation analysis.  

The ELMOD 6 program provides three methods to conduct the backcalculation of layer 

moduli (radius of curvature, deflection basin fit, and finite element based method).  For this 

study, the deflection basin method was used in the backcalculation analysis.  The 

backcalculation analysis was conducted until a RMSE of 2% or less was achieved.  The 

BELLS2 model was used for correcting the AC moduli for temperature [36, 37]; the 

reference temperature was set at 25°C.  This method requires the infrared (IR) surface 

temperature at the time of FWD measurements and the average of the previous day’s 

minimum and maximum air temperatures. 

Fifty-two in-service road sections were analyzed to backcalculate the layer moduli.  Road 

segments were divided into two categories: (1) untreated base sections, representing sections 

with regular granular base layer or with no base; and (2) sections with cement-treated base 

layer [38].  The results of the backcalculated layer moduli for a sample of the road segments 

are presented in Figures 40 and 41. As shown in Figure 40, there were five road sections that 

were constructed with the asphalt layer directly on top of the subgrade with no base layer in 

between. 
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Figure 41 
Backcalculated layer moduli for sections with cement-treated base layer 

Loss in Structural Capacity 

After conducting the backcalculation analysis, the next step in the development of the 

structural index was to determine the effects of layer moduli on the structural capacity of the 

pavement.  Change in SN is an indicator of the change in the pavement structural capacity.  
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Figure 40 
Backcalculated layer moduli for sections with untreated base layer1 

1 No base layer in sections 124-03, 331-01, 837-06, 89-08, and 166-04. 
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The loss of structural capacity was quantified as the difference between the pavement SN at 

the time of construction and at the time of FWD testing.  To calculate the pavement SN at the 

time of construction, equation (27) was used. 

The same equation was used to determine the SN of the pavement at the time of FWD 

testing; however, due to pavement deterioration from both traffic and environmental loading, 

the values of a1 and a2 would be less than the original typical design values.  The following 

equations were used to estimate the values of a1 and a2 from the backcalculated layer moduli 

based on the AASHTO 1986 design guide [39, 40]: 

a1= a+ b* log (E1) + c*(log (E1)) 2  (28) 

where, 
a = -9.904, b= 2.958, c= -0.224, and E1 = AC backcalculated layer modulus (ksi). 

a2=0.249 log (E2)-0.977 (29) 

where, 
E2= base layer backcalculated modulus (ksi). 

Formulation of the Structural Health Index (SHI) 

The Structural Health Index (SHI) was defined based on the loss in SN such that it was 

scaled logistically from zero to 100.  A sigmodal function was selected to represent the 

correlation between the loss in SN % and the SHI as presented in equation (30).  Constant 

parameters in the function were optimized such that sections with a loss in SN ≥ 50 % would 

have SHI values near zero, and sections with minimal or no loss in SN would have SHI 

values near 100 [38]. 

SHI= 
100

 (30)
1+e0.15 (SN loss %-30) 

Based on equation (30), the correlation between the SHI and the loss in SN% for the 52 road 
sections is presented in Figure 42. 
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Figure 42 
Relation between loss in structural number and the SHI 

Evaluation and Validation of the Structural Health Index 

After developing the SHI, a comprehensive evaluation of the extracted cores was conducted.  

The road sections were classified into two categories according to the core conditions.  

Sections with core samples with no visible asphalt stripping or material deterioration were 

categorized as “Good.” Sections with asphalt stripping and/or material deterioration were 

categorized as “Poor.” For the 52 road sections, 25 cores were found to be under the “Poor” 

category and the remaining 27 were classified under the “Good” category.  The average SHI 

for the Poor sections was equal to 9 and the average PCI was equal to 77.  The average SHI 

for the Good sections was equal to 60 and the average PCI was equal to 87.  Figure 43 shows 

two examples of cores extracted from sections with low SHI values: Control Section 163-01 

(route LA 133), which had an SHI of 10 and control section 834-07 (route LA 835), which 

had an SHI value of 6. In addition, examples of cores extracted at sections with high SHI 

value are shown in Figure 44 for control sections 155-01 (route LA 143) and 319-01 (route 

LA 155), which have an SHI value of 98.5 and 82, respectively [38]. 
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(a) Control Section 834-07 

(b) Control Section 163-01 

Figure 43 
Stripped core samples from low SHI sections 
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(a) Control Section 155-01 

(b) Control Section 319-01 

Figure 44 
Sections with high SHI core samples 

Figure 45 presents the percentage of “Poor” and “Good” sections for the different ranges of 

SHI. As shown in this figure, for section with SHI values greater than 70, 100% of the 

sections were in good conditions.  In contrast, for sections with SHI values less than 20, 

100% of the sections were in poor conditions.  These trends support the successful 

description of pavement structural conditions through the SHI. 
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Figure 45 
Relation between SHI and pavement structural condition [38] 

Comparison between SHI and the Pavement Condition Index (PCI) 

To ensure that the use of SHI effectively contributes to the current decision matrix used in 

Louisiana and adds values to the functional indices currently used by the state, a statistical t-

test analysis was conducted between SHI and PCI.  Results of the t-test showed that there is a 

significant difference between the PCI and the SHI with a P-value less than 0.001.  Further, 

the Pearson correlation index between PCI and SHI was equal to 0.41, which indicates a poor 

correlation between the two indices.  These results indicate the use of the SHI would provide 

additional performance information not currently available in the State PMS. 

Compare Rates of Deteriorations for Pavement Sections  

Pavements in poor structural conditions are expected to have a faster rate of deterioration 

than pavements in good structural conditions [8].  In this task, the research team analyzed 

PMS data collected in District 05 from 2005 to 2013 to determine the rate of structural and 

functional deteriorations for pavements that are structurally-deficient and those that are 

structurally-sound. Based on this analysis, the research team assessed whether the rates of 

deterioration are significantly different for pavements that are structurally-deficient and those 

that are structurally sound. 
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Functional Class 

As traffic volume is the main factor that affects the rate of pavement deterioration, sections 

were classified according to their functional class.  As shown in Table 25, rural major 

collectors, rural minor arterials, and urban minor arterials had the highest traffic volumes in 

the available data set. It is noted from Table 25 that only 6.9 miles of urban collectors were 

tested, which provided insufficient amount of data for further analysis of this functional 

class. Calculations were performed in this analysis at 0.1-mile intervals to match the DOTD 

PMS practice in averaging data and assigning decisions based on 0.1-mile interval.   

Table 25 
Functional class distribution 

Functional Class Total (Length miles) Average AADT (Vehicle /day) 
Rural Major Collector 449.2 1,800 
Rural Minor Collector 321.5 898 
Rural Local 152.2 598 
Rural Minor Arterial 71.2 4,800 
Urban Minor Arterial 56.3 6,400 
Urban Collector 6.9 3000 

Segments that received treatment during the monitoring period were removed from the 

analysis to avoid misleading results.  Two procedures were followed in the elimination 

process. First, any segment that had a maintenance project recorded in the PMS database 

between 2005 and 2013 was removed.  Second, any segment that showed an increase in one 

or more of the performance indices values during the analysis period was eliminated.  For 

example, if a road had an ALCR value of 80 in year 2005 and an ALCR value of 90 in year 

2007, it would be eliminated from the analysis since repair activities would have taken place 

on this segment. 

Structural Condition Index (SCI) 

To describe in-service pavement structural conditions, a new parameter termed the Structural 

Condition Index (SCI), was introduced.  The SCI is calculated as the ratio between the in-

service structural number (SNRWD0.1) and the AASHTO SN required for a design life of 10 

years (SNreq10) as follows: 

SCI  . (31)
 

The AASHTO 1993 design equation was used to calculate required SN for a design period of 

10 years (SNreq10) as shown below: 
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log W  Z S   9.36log SN  1  0.2   
∆

  2.32	 logMR  8.07 (32)
. .  

where, 

W18 = equivalent single axle load for the design period (ESALS); 

ZR = Standard normal deviation for selected reliability; 

S0=Standard deviation; 

∆PSI= Design Serviceability loss; 

MR=Resilient Modulus of Subgrade (psi); and 

SN= AASHTO structural number. 

According to DOTD office of design, the reliability level was considered 90% (ZR =-1.282), 

∆PSI was considered 1.7, and the S0 was considered 0.49. The subgrade modulus values 

were determined from DOTD parish resilient modulus map.  Traffic ESALs were obtained 

from the Highway Needs File. 

Define SCI Intervals 

The SCI was calculated for each 0.1 mile-segment of the road sections; it was noticed to 

follow a normally-distributed function around a mean of 1.4 as shown in Figure 46.  Based 

on the trends observed in this figure, initial SCI intervals were defined and are provided in 

Table 26. 
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Figure 46 
SCI histogram distribution 
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Table 26 
Initial SCI intervals 

SCI Range Structural Capacity 

SCI<0.6 Very low 
1>SCI≥0.6 Low 
1.5>SCI≥1 Low to Medium 
2>SCI≥1.5 Medium 
SCI≥2 high 

Compare Structural Deterioration Rates 

For each SCI interval, PMS data were collected for the collection cycles from 2005 to 2013.  

However, the number of sections that did not receive treatment for that relatively long period 

of time were found to be too small to definitively assess the deterioration trends.  Hence, the 

criterion was changed to include all sections that did not received treatment from 2009 to 

2013 such that all pavement sections selected had three data points.  Figures 47 to 54 present 

the deterioration trends of the performance indices for each predefined SCI interval.  By 

fitting these trends linearly, the slope of each line is an indicator of the deterioration rates, 

which are presented in Tables 27 and 28.   

As shown in Tables 27 and 28, there is a correlation between the SCI category and the rate of 

deterioration. For example, sections in the very low and the low categories are deteriorating 

faster than sections in the high and the medium categories.  It is worth noting that the rates of 

deterioration were independent of the initial values of the performance indices for the 

collectors, except for roughness. However, for the arterials, the rate of deterioration was 

affected by both the SCI value and the initial values of the performance indices. 
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Figure 47 
Alligator cracking deterioration for major collectors 
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Figure 48 
Rutting deterioration for major collectors 
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Figure 49 
Random cracking deterioration for major collectors 
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Figure 50 
Roughness deterioration for major collectors 
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Figure 51 
Alligator cracking deterioration for arterials 
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Figure 52 
Rutting deterioration for arterials 
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Figure 53 
Random cracking deterioration for arterials 
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Figure 54 
Roughness deterioration for arterials 
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Table 27 
Linear fitting of deterioration rates for major collectors 

Rank ALCR Equation RUT Equation RNDM Equation RUFF Equation 
Very low y = -4.25x + 8636 y = -4.75x + 9632 y = -5.70x + 11556 y = -2.50x + 5093 
Low y = -2.79x + 5707 y = -1.40x + 2907 y = -3.63x + 7395 y = -3.00x + 6103 

Low - med. y = -2.37x + 4855 y = -1.01x + 2140 y = -2.35x + 4812 y = -1.50x + 3106 

Medium y = -0.25x + 602 y = -0.73x + 1569 y = -0.48x + 1063 y = -1.25x + 2605 

High y = -0.25x + 602 y = -0.40x + 903 y = -0.48x + 1071 y = -1.00x + 2106 

Table 28 
Linear fitting of deterioration rates for arterials 

Rank ALCR Equation RUT Equation RNDM Equation RUFF Equation 
Very low y = -3.25x + 6598 y = -3.50x + 7113 y = -2.00x + 4088 y = -2.75x + 5607 
Low y = -2.50x + 5093 y = -3.50x + 7116 y = -1.75x + 3590 y = -3.25x + 6610 

Low - med. y = -1.75x + 3601 y = -1.75x + 3602 y = -1.00x + 2095 y = -0.75x + 1592 

Medium y = -1.50x + 3110 y = -3.00x + 6617 y = -0.25x + 600 y = -1.00x + 2100 

High y = -1.25x + 2610 y = -2.25x + 4616 y = -0.25x + 1104 y = -0.50x + 1099 

Overlay Design for Selected Pavement Sections 

In this task, an overlay design was conducted for all sections that were included in the RWD 

testing program.  Results of this analysis were used to assess the cost-efficiency of the RWD 

and to develop a methodology to incorporate structural capacity information into the PMS. 

Two approaches of overlay design were used, and their results were compared.  First, the 

current approach adopted by the DOTD office of design, which does not incorporate 

structural capacity indicators based on NDT measurements.  Second, a new approach was 

developed in which RWD measurements are incorporated into the design procedure. 

Current Overlay Design Procedure  

According to the DOTD office of design, the current overlay design procedure is presented.  

First, if the PMS maintenance decision for a road segment is “thin overlay,” the overlay is 

considered as a functional overlay with a thickness of 2 in., and no design is required.  

Second, if the PMS decision is “medium overlay” or “structural overlay,” the overlay 

thickness is estimated from the following equation: 

Overlay thickness   (33) 
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where, 

SNreq = required structural number for a design life of 10 years; 

SNeff = effective structural number assuming 50% loss in structural capacity and 2 in. 
milling, as shown in equation (34); and  

a1= asphalt layer structural coefficient (assumed 0.44). 

∗ ∗ ∗ 	 ∗ ∗
SN   

 
2 ∗ a  (34)

 

The aforementioned assumption of 50% loss in structural capacity may lead to two types of 

error as shown in Figure 55. First, if the actual loss in structural capacity is less than 50%, 

the designed overlay using current design practice would be overestimated (Type І error).  

Second, if the actual loss in structural capacity is more than 50%, the designed overlay using 

the current practice would be underestimated (Type II error).  Both types of error will lead to 

loss of funds. The proposed design approach is aimed at avoiding both Type I and Type II 

errors by taking into consideration the in-service pavement structural capacity. 

Figure 55 
Type of errors in the current design procedure 
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Improved Overlay Design Procedure  

The research team developed a procedure to incorporate RWD measurements in the overlay 

design. Such a procedure would allow taking into consideration in-service pavement 

structural conditions instead of assuming 50% loss in structural capacity.  Furthermore, in the 

proposed procedure, road segments with PMS decisions of “thin overlay,” “medium 

overlay,” and “structural overlay” are all considered for overlay design.  Figure 56 shows a 

comparison between the two overlay design procedures.  Equation (32) is used to calculate 

SNreq, and equation (33) is used for calculating the overlay thickness; however, SNRWD0.1 is 

used to estimate the effective structural number, which is termed SNRWDeff. 

Figure 56 
Current and proposed overlay design procedures 

According to LTRC study FHWA/LA.08/454 conducted by Wu and Gaspard, the SN 

calculated from FWD measurements (SNFWD) needs to be calibrated for Louisiana’s 

conditions when used for overlay design purposes [41, 42]. The researchers developed a 

model to estimate the SNeff from the SNFWD as shown in equation (35). Since the model 

proposed for SNRWD0.1 was developed and validated based on SNFWD, SNRWD was subjected 

to the same calibration procedure as shown in equation (36):   
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that had available backcalculated layer moduli were considered for further analysis.  A multi-

layer elastic software (KenPave) was used to calculate the critical pavement responses 

(tensile strain at the bottom of the AC layer and vertical strain on top of the subgrade) for the 

two design approaches, i.e., current and proposed overlay design procedures.  Pavement 

responses were calculated for a load application of 9,000 lbs. on a dual tire assembly with a 

radius of 5.9 in. The numbers of cycles for fatigue and subgrade rutting failure were 

estimated according to the Asphalt Institute (AI) methodology using equations (9) and (10). 

The number of cycles for fatigue failure and subgrade rutting failure (Nd and Nf) calculated 

from equations (9) and (10) was compared to the actual traffic (ESALs) to determine the 

design life. Table 29 presents the results of the analysis. As shown in Table 29, the modified 

design procedure was more precise in satisfying the required 10-year design life for the 

different pavement sections. 

Table 29 
Comparison between overlay design procedures using a mechanistic-empirical 

approach 

Section# 

Current overlay design procedure Proposed overlay design procedure 

Overlay 
thickness 

ɛt ɛc 

Design 
life 
(years) 

Overlay 
thickness 

ɛt ɛc 

Design 
life 
(years) 

837-15 4.0 6.6E-6 1.7E-4 16 2.0 4.8E-6 2.1E-6 12 
831-07 4.5 2.2E-4 2.5E-4 14 2.5 3.1E-4 3.5E-4 10 
167-04 4.5 2.7E-4 1.1E-3 4 7.5 8.4E-5 7.6E-4 13 
68-02 4.0 3.3E-5 7.2E-4 7 5.0 2.3E-5 6.1E-4 12 

Figure 58 presents the correlations between pavement SN calculated based on FWD 

measurements and both the SNRWD0.1 and the 50% loss of the original structural capacity 

assumption.  It is clear from these results that SNRWD0.1 correlates much better with the SN 

calculated based on FWD than the 50% loss of SN assumption. 
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Figure 58 
Comparison of SNRWD0.1 and 50% structural capacity loss assumption to SNFWD 

 

Investigate the Feasibility of Determining the Subgrade Modulus from RWD Data 

 
In this task, the development of a model that utilizes RWD deflection measurements to 

predict the subgrade resilient modulus for flexible pavements at the network-level is 

described.  For model development, RWD and FWD measurements obtained from the testing 

program conducted in Louisiana were used to train an ANN-based model.  After the learning 

process, the ANN model was validated using RWD and FWD data obtained from the testing 

program independently conducted at the MnROAD test facility in Minnesota. 

To develop the proposed ANN model, the FWD sensor D7 (60 in. from the center of 

the plate) measurements were used in equation (3) to calculate the subgrade resilient modulus 

for the tested pavement sections, Step 1.  No temperature correction was applied for the D7 

measurements as they are only affected by the subgrade properties [30.]  Second, statistical 

correlations were investigated between RWD measurements and the subgrade resilient 

modulus calculated from Step 1.  The RWD measurements were corrected to a reference 

temperature of 20oC using BELLS equation and the AASHTO 1993 procedure [18, 43]. 

Finally, the RWD measurements and the subgrade resilient modulus values calculated from 

FWD were utilized to develop and validate the ANN model. 

Correlation between the RWD and the Subgrade Resilient Modulus 

As described earlier, the RWD reports the average deflections on 0.1-mile intervals along 

with the standard deviations.  Therefore, four readings can be obtained from the device; the 

average deflection at the rear axle (D0) and its standard deviation (σD0), and the average 
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deflection at 18 in. (D1) and its standard deviation (σD1). The statistical correlations between 

these four parameters and the subgrade resilient modulus were investigated for the 

measurements obtained from the Louisiana testing program.   

An analysis of variance (ANOVA) was conducted between the subgrade resilient modulus 

and the four RWD measurements using the SAS 9.4 software. Table 30 summarizes the 

results of the statistical analyses.  As shown in this table, Parameters D0, σD0, and D1 were 

found to be significantly correlated to the subgrade resilient modulus.  On the other hand, σD1 

was not statistically correlated to the subgrade resilient modulus.  The coefficient of 

determination (R2) between each parameter and the subgrade resilient modulus was also 

calculated. Figure 59 presents the correlations between the D1 and D0 with the Mr. As 

shown in Figure 59, there is a downward trend between the decrease in subgrade resilient 

modulus and the measured RWD deflections; yet, considering only one deflection 

measurement is not sufficient to accurately predict the subgrade resilient modulus as evident 

by the low R2 shown in this figure. 

Based on these findings, the three RWD measurements (D0, σD0, and D1) were considered in 

the ANN model for prediction of the subgrade resilient modulus.  As previously noted, the 

RWD prototype used in MnROAD measured the secondary deflection (D1) at 15 in. instead 

of 18 in. To develop a model that is compatible with measurements of both prototypes, 

“D1/r” was used in the model instead of D1; where, r is the radial distance from the RWD 

rear axle. A multi-linear regression model was developed using SAS 9.4 and resulted in an 

R2 of 0.6 and an RMSE of 15%; therefore, ANN was utilized in the present study to develop 

a model with better accuracy than the multi-linear regression model.  Comparing linear 

regression with ANN is out of the scope of this study as recent studies concluded that 

comparison between linear regression models and ANN-based models is not adequate [44]. 

Table 30 
Correlation between RWD measurements and the FWD subgrade resilient modulus  

Parameter P-Value R2 

D0 <0.0001 0.2950 

σD0 <0.0001 0.4023 

D1 <0.0005 0.1933 

σD1 0.9087 0.1679 
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Figure 59 

Correlation between the subgrade resilient modulus and (a) D1 and (b) D0 

ANN-Model Development 

A multilayered feed-forward ANN using a back-propagation error algorithm was developed 

with a tan-sigmoid transfer function and a linear activation function.  The simplest network 

topology that produces acceptable prediction accuracy was selected to avoid overfitting of 

the model [31, 32]. The network topology consisted of three layers of neurons and two 

layers of weights; an input layer (i) of 3 neurons; a hidden layer (j) of 2 neurons; a target 

output layer (k) of 1 neuron, layer of weights between neuron layers i and j (ij), and layer of 
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weights between neuron layers j and k (jk). Weights in layers ij and jk were named “W” and 

“W’,” respectively. In addition, biases values were added to the sums calculated at each 

neuron (except layer i). Biases in layers j and k were named “b” and “B,” respectively [32]. 

To train the network, such that the proper weights and biases are calculated, the input layer 

was fed with the three selected RWD measurements (D0, σD0, and D1), and the target layer 

was fed with the subgrade resilient modulus values (Mr). The network structure is shown in 

Figure 60. 

Figure 60 
Structure of the ANN model 

Data from the Louisiana testing program were utilized in the model development phase (124 

road segments).  The data were divided into 70% for training, 15% for validation, and 15% 

for testing. To avoid overfitting and to increase the network generalization ability, training 

was halted when the validation set error stopped decreasing, as shown in Figure 61.  Since 

the testing data set had no effect on the training phase, it was used to provide an independent 

measure of the network performance. 
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Figure 61 
ANN model performance 

Model Prediction  

The regression plots of the ANN model for the training, validating, testing, and overall sets 

are shown in Figure 62. All data processing was performed off-line using a commercial 

software package (MATLAB R2013a, The MathWorks Inc.).  As shown in this figure, the 

model had acceptable prediction accuracy with an R2 of 0.73. In addition, the RMSE (%) 

was calculated at 12%.  The RMSE (%) was calculated as follows: 

  / 
∑ 	

 (37)RMSE%  100 ∗ 
∑ 	 	   
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Figure 62 
Regression plots of the developed ANN model for (a) the training data set, (b) the 

validation data set, (c) the testing data set, and (d) all data 

Network Description 

At the end of the learning phase, proper weights were assigned to every connection, and 
proper biases were assigned to each neuron as follows: 

 	 37.4	 42.8	 0.03 
0.2	 0.35 0.17 
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Forward Calculations 

Artificial neural network models are considered by many researchers as "black-boxes" [45-

47].  With a complex network structure, it is difficult to explicitly describe the learned 

relationship between the input and the output variables. However, the simplicity of the 

model presented in this study (only one hidden layer with only 2 neurons) allows to describe 

the network in a form of a simple equation. The general equation of a backpropagation 

algorithm-based neural network with one hidden layer, one output variable, and a tan-

sigmoid (tansig) transfer function can be described as follows [32]: 

k B   ∑  tansig b 	 ∑  a W  W ) (38) 

where, 

k= the model output at layer k; 

nj = number of neurons in the hidden layer; 

ni = number of neurons in the input layer; 

ai = the input variables; and 

The tansig function can be described as follows: 

tansig	 x  	  (39) 

A linear activation function was then utilized to transfer the output in layer k to the final 

output (Mr). The following expression describes the model developed utilizing ANN to 

predict the subgrade resilient modulus based on RWD measurements: 

M   119.7 ∗ 0.415  0.027 ∗ tansig	 22.49  37.4D   42.8σ
 

0.03    1.80 ∗ 

tansig 0.47  0.2D   0.35σ
 

0.17    195.2  (40)
 

Model Evaluation and Analysis 

The limits of agreement (LoA) methodology, developed by Bland and Altman, is a simple 

and powerful methodology for assessing agreements between two devices or procedures 

[48].  The methodology was successful to the extent that the reference that introduced this 

method has become one of the most cited statistical papers [49]. Bland and Altman 
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concluded that using only regular regression could be misleading when comparing two 

devices or methodologies for two reasons. First, correlation depends on the range and 

distribution of the variables.  Second, correlation ignores any systematic bias between the 

two variables [50]. A recent study concluded the usefulness of the LoA methodology for 

comparing TSD and the FWD measurements [51]. 

The procedure of the LoA methodology consists of the following steps: (1) plot a chart with 

the differences between measurements by two methods on the Y-axis, and the mean of the 

two measurements on the X-axis, (2) calculate the mean and the standard deviation (σ) of the 

differences, and (3) calculate the mean ± 1.96 σ. One would then expect 95% of differences 

between measurements by the two methods to lie within these limits.  Figure 63 shows the 

LoA between the subgrade resilient modulus values calculated based on FWD and RWD 

measurements; the chart is also known as the Bland and Altman chart. 

As shown in Figure 63, 95% of the differences between the Mr values calculated based on the 

FWD and the RWD measurements did not exceed the range of ± 3 ksi, which is reasonable 

especially at the network level.  The figure provides a better understanding of the model 

accuracy in predicting Mr based on RWD data. The figure also shows that the error in the 

predicted subgrade resilient modulus is independent of the Mr value. 

Figure 63 
Bland and Altman Chart for the subgrade resilient modulus calculated based on FWD 

and RWD measurements 
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Model Validation 

The generalization ability of the presented ANN model was tested using measurements 

obtained from the testing program conducted at MnROAD.  RWD data from 16 flexible 

pavement testing cells were used as inputs in the ANN model to predict the subgrade resilient 

modulus. The Mr predicted values were then compared with those calculated based on FWD 

measurements, see equation (24).  The model showed acceptable accuracy with an R2 of 0.72 

and a RMSE of 8% as shown in Figure 64. 
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Figure 64 
Model validation using data from the MnROAD testing program  

Cost Efficiency and Added Values of RWD Testing 

Two approaches were developed to implement RWD measurements into the DOTD current 

practices. In the first approach, the SCI was converted to a scaled index from 0 to 100 and 

was added to the State PMS treatment selection matrix.  In the second approach, the 

calculated SNRWD0.1 was added to the State overlay design procedure (see Figure 56).  Figure 

65 presents the general layout of the two developed approaches.  Description of the two 

approaches is presented in the following sections. 
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Figure 65 
General layout of the proposed implementation approaches 

Approach 1: Modify the Treatment Selection Decision Matrix Procedure 

In the first approach, the SCI was converted to a scaled index from 0 to 100, where a value of 

100 indicates excellent structural condition, and was added to the state treatment selection 

matrix. The SCI was converted to a scale from 0 to 100 (SSCI) to follow the same scale 

adopted by the other PMS indices using a sigmodal function as presented in equation (41): 

SSCI  . .  (41) 

where, 

SCI= Structural Condition Index; and 

SSCI= Scaled Structural Condition Index. 

Figure 66 shows the correlation between the SCI and the SSCI.  Modified treatment selection 

matrices were developed with the implementation of the SSCI and are presented in Tables 31 

to 32. 
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Figure 66 
Correlation between the SCI and the SSCI 

Table 31 
Modified decision matrix for arterials  

ALCR RNDM PTCH RUT RUFF SSCI 

Micro-
surfacing ≥95 ≥95 ≥95 ≥65 – <80 ≥80 ≥95 

Thin overlay 
(2in.) ≥90 ≥80 – <95 ≥80 <65 ≥70 – <80 ≥75 – <95 

Medium 
overlay ≥50 – <90 <80 ≥60 – <80 ---- <70 ≥60 – <75 

Structural 
overlay <50 ---- <60 ---- ---- <60 
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Table 32 
Modified decision matrix for collectors  

ALCR RNDM PTCH RUT RUFF SSCI 

Polymers S. treat. ≥85 – <95 
≥80 – 
<95 

≥85 ≥65 ≥80 ≥95 

Microsurfacing ≥95 ≥95 ≥95 
≥65 – 
<80 

≥80 ≥95 

Thin overlay (2 in.) ---- ---- ---- ---- ---- ≥75 – <95 

Medium overlay ≥60 – <85 <80 
≥65– 
<85 

<65 ≥60 – <80 ≥60 – <75 

In-place stabilization  
<60 ---- <65 ---- <60 <60 

The impacts of the proposed modifications presented in Tables 31 and 32 were investigated.  

The effects were analyzed using two levels of decisions: treatment selections are assigned to 

every 0.1 mile road segment and treatment selections are assigned to every control section, 

which assumes that only one treatment decision is assigned to every homogenous pavement 

section. Table 33 presents the effects of applying the modified decision matrix if decisions 

are made to every 0.1 mile road segment.  Similarly, Table 34 presents the effects of 

applying the modified decision matrix if decisions are made to every homogeneous control 

section. It is noted that by applying the modified decision matrix procedure, the M&R cost 

would increase by 14% as the recommended modifications only address Type II error (i.e., 

applying a functional treatment to a structurally deficient pavement).  Since the functional 

indices were not changed, Type I error was not addressed by adding the proposed structural 

condition index. To address both Type I and II errors, Approach 2 should be used, which is 

recommended. 
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Table 33 
Change in treatment selection by applying proposed modification to decision matrix 

Modified Matrix Decision 

C
u

rr
en

t 
D

ec
is

io
n

 

DN MS PST TO MO SO IPS Change 

DN* 4195 0 0 512 132 0 206 16.8% 

MS* 0 145 0 31 3 0 2 19.9% 

PST* 0 0 491 159 49 0 90 37.8% 

TO* 0 0 0 1529 159 0 384 26.2% 

MO* 0 0 0 0 1751 8 578 25.1% 

SO* 0 0 0 0 0 10 0 0.0% 

IPS* 0 0 0 0 0 0 1281 0.0 % 

Where, DN*= Do Nothing, MS*= Microsurfacing, PST*= Polymer Surface Treatment, 
TO*= Thin Overlay, MO*= Medium Overlay, SO*= Structural Overlay, and IPS* = in place 
Stabilization 

Table 34 
Change in projected cost of treatments based on modified decision matrix 

Decision 
Number of sections 

Current Practice Modified Practice 
DN 39 30 
MS 0 0 
PST 0 0 
TO 2 7 
MO 91 83 
SO 0 3 
IPS 12 21 
Total Cost $256,625,600 $279,741,800 

Approach 2: Modify Treatment Selection and Overlay Design Procedure 

In the second approach, the calculated SNRWD0.1 was added to the state overlay design 

procedure and SSCI was added to the State treatment selection matrix.  The main advantage 

of this approach is that it uses SNRWD0.1 to estimate in-service pavement structural conditions 

instead of assuming a 50% loss in structural capacity as it is currently assumed.  Two 

enhanced decision trees were developed to implement the proposed changes to the overlay 
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Do-Nothing 

Current (Same) 
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design procedure. The enhanced decision trees were developed for arterials and collectors 

and are shown in Figures 67 and 68. The decision trees were constructed based on the 

following assumptions: 

 Sections in poor structural conditions should receive rehabilitation treatments that 

increase pavement structural capacity. 

 Sections in good structural conditions would receive the same (M&R) actions selected 

according to the current DOTD decision matrix, see Table 3. 

 Medium and structural overlays would be designed utilizing the SNRWD0.1 as described 

earlier. 

 Minimum overlay thickness was set at 50.8 mm (2 in.). 

Figure 67 
Enhanced decision tree for arterials 
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Figure 68 
Enhanced decision tree for collectors 

To assess the cost-efficiency and added value of the second approach, the enhanced decision 

trees were applied to the road network in District 05, which was tested using RWD.  

Comparisons were made between the PMS decisions using the current decision matrix, see 

Table 3, and the enhanced decision trees. Table 35 and 36 present the change in treatment 

selection of the current DOTD PMS practice and the proposed enhanced decision procedure 

for the functional classes of rural minor arterials and the rural major collectors, at the 

segments level.  As shown in these tables, the second approach can address both Type I and 

II errors in treatment selection.  It also provides a more accurate overlay design by using 

SNRWD0.1 to estimate in-service pavement structural conditions instead of assuming a 50% 

loss in structural capacity as it is currently assumed. 

Table 35 
Transition matrix for the current and the enhanced trees procedure for the rural minor 

arterials 

Current decision/ 
New decision DN* MS* TO* MO* SO* 

Type I 
error % 

Type II 
error % 

Total error 
% 

DN* 260 0 68 0 0 0 20.7 20.7 
MS* 0 3 6 0 0 0 66.7 66.7 
TO* 0 0 72 0 1 0 1.4 1.4 
MO* 0 0 196 66 39 65.1 13.0 78.1 
SO* 0 0 0 0 1 0 0.0 0.0 
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Table 36 
Transition matrix for the current and the enhanced trees procedure for the rural major 

collectors 

Current decision/ 
New decision DN* PST* MS* MO* TO* IPS* 

Type I 
error % 

Type II 
error % 

Total 
error % 

DN* 1601 0 0 218 0 56 0.0 14.6 14.6 
MS* 0 0 18 2 0 1 0.0 15.0 15.0 
PST* 0 210 0 44 0 9 0.0 20.2 20.2 
MO* 0 0 0 567 1265 142 64.1 7.2 71.3 
IPS* 0 0 0 0 0 359 0.0 0.0 0.0 

The cost associated with each treatment is presented in Table 37 from PMS sources.   

Table 37 
Construction cost for each treatment strategy per mile 

Treatment Type Construction cost/ mile 2 lanes (2014) 
Microsurfacing $67,000 
Polymer Surface treatment  $72,000 
Thin Overlay $184,000 
Medium Overlay $334,000 
Structural Overlay $360,000 
In place Stabilization $496,000 

Tables 38 to 42 present the comparison between the current decision matrix and the enhanced 

decision trees for rural minor arterials, rural major collectors, urban minor arterials, rural 

minor collectors, and rural locals, at the segment level, while Table 43 presents the same 

comparison at the control section level.  To compare the difference in cost between the two 

decision-making processes, the cost of performing each treatment was obtained from the 

PMS database. Construction and RWD testing costs were considered in this analysis; 

however, other sources of cost, such as user cost, were not considered.   
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Table 38 
Current and enhanced decision comparison for rural minor arterials  

Current Decision # Segments Enhanced Decision # Segments 

Do Nothing 328 Do Nothing 260 
Microsurfacing 9 Microsurfacing 3 
Thin Overlay 73 Thin Overlay 342 
Medium Overlay 301 Medium Overlay 66 
Structural Overlay 1 Structural Overlay 41 
Total # segments 712 Total # segments 712 

Treatment cost $11,492,900 Treatment cost $9,998,025 
RWD testing cost $0.00 RWD testing cost $4,725 

Table 39 
Current and enhanced decision comparison for rural major collectors  

Current Decision # Segments Enhanced Decision # Segments 

Do Nothing 1,875 Do Nothing 1601 
Microsurfacing 21 Microsurfacing 18 
Polymer Surface treatment  268 Polymer Surface treatment  210 
Thin Overlay 0 Thin Overlay 1,265 
Medium Overlay 1969 Medium Overlay 831 
In place Stabilization 359 In place Stabilization 567 
Total # segments 4,492 Total # segments 4,492 

Treatment cost $85,641,300 Treatment cost $80,818,700 
RWD testing cost $0.00 RWD testing cost $31,500 

Table 40 
Current and enhanced decision comparison for urban minor arterials  

Current Decision # Segments Enhanced 
Decision 

# Segments 

Do Nothing 260 Do Nothing 217 
Microsurfacing 10 Microsurfacing 7 
Thin Overlay 121 Thin Overlay 238 

Medium Overlay 161 Medium Overlay 52 
Structural Overlay 10 Structural Overlay 48 
Total # segments 562 Total # segments 562 

Treatment cost $8,030,800 Treatment cost $7,897,500 
RWD testing cost $0.00 RWD testing cost $6,600 
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Table 41 
Current and enhanced decision comparison for rural locals 

Current Decision # Segments Enhanced Decision # Segments 
Do Nothing 239 Do Nothing 163 
Microsurfacing 3 Microsurfacing 3 
Polymer Surface treatment  79 Polymer Surface treatment  24 
Thin Overlay 0 Thin Overlay 172 
Medium Overlay 591 Medium Overlay 286 
In place Stabilization 610 In place Stabilization 874 
Total # segments 1,522 Total # segments 1,522 

Treatment cost $50,584,300 Treatment cost` $56,277,300 
RWD testing cost $0.00 RWD testing cost $16,800 

Table 42 
Current and enhanced decision comparison for rural minor collectors 

Current Decision # Segments Enhanced Decision # Segments 
Do Nothing 551 Do Nothing 367 
Microsurfacing 11 Microsurfacing 10 
Polymer Surface treatment  340 Polymer Surface treatment  240 
Thin Overlay 0 Thin Overlay 561 
Medium Overlay 1476 Medium Overlay 843 
In place Stabilization 837 In place Stabilization 1,194 
Total # segments 3,215 Total # segments 3,215 

Treatment cost $93,335,300 Treatment cost $99,534,400 
RWD testing cost $0.00 RWD testing cost $38,400 

Table 43 
Current and enhanced decision comparison at the control sections level 

Decision 
Number of sections 

Current 
Practice 

Modified Decision 
Trees (Approach 2) 

DN 39 26 
MS 0 0 
PST 0 27 
TO 2 46 
MO 91 106 
SO 0 0 
IPS 12 15 
Cost $256,625,600 $182,974,600 
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The cost and productivity of RWD testing were based on the data obtained from ARA, Inc. 

as shown in Table 44 [14]. 

Table 44 
Cost and productivity of RWD testing 

Functional Class Productivity lane-mile/ day Cost $ per lane-mile 
Interstate 250 $42 
Secondary roads 150 $70 
Local Roads 100 $105 

Monetary savings were calculated as follows: 

Savings = current decision cost – (enhanced decision cost+ RWD testing cost) (42) 

In lights of the results presented in Tables 37 to 41, it was observed that there is a correlation 

between the savings that could be achieved through the second approach and the roadway 

functional class. Applying the second approach on major collectors and arterials resulted on 

positive saving values; however, applying the enhanced decision procedure on local roads 

and minor collectors resulted in negative saving values as shown in Figure 69.  In addition, it 

is noted from Table 44 that there is a significant reduction in RWD productivity when 

operated in local roads, which results in increasing the cost of testing.  The correlation 

between the dollar saving amount and the AADT is shown in Figure 70.  As shown in this 

figure, RWD testing would provide significant savings at an AADT of 5,000 or greater. 

Functional Class 

Figure 69 
Monetary saving for each roadway functional class 
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 Figure 70 
Correlation between the saving amount and traffic volume 

Develop a One-Step Enhanced Decision Making Tool 

The objective of this task was to develop a one-step enhanced decision-making tool that 

would consider both structural and functional pavement conditions in treatment selection as 

well as the modified overlay design procedure.  To achieve this objective, an ANN-based 

pattern recognition system was trained and validated using pavement condition data and 

RWD measurements-based SN (SNRWD0.1) to arrive at the most optimum maintenance and 

rehabilitation (M&R) decisions. The developed tool is time-efficient since it allows PMS 

engineers to determine the final enhanced M&R decisions (which requires several analysis 

steps) in only one step. 

Pattern recognition is one of the most important applications of Artificial Intelligence (AI).  

Through pattern recognition, machines can observe information, learn to distinguish patterns 

of interest, and make sound and reasonable decisions about the classifications of patterns 

[52].  Machine recognition of patterns has been successfully applied to solve problems in a 

variety of engineering and scientific disciplines.  A pattern can be a fingerprint image, a 

handwritten cursive word, a human face, or a speech signal [52].  In pavement and 

transportation engineering, pattern recognition algorithms have been utilized in many 

applications such as crack detection through image processing, estimation of asphalt mix 

properties, traffic simulation, and monitoring travel behavior [53-56]. 
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Pattern recognition was applied by using a feed forward ANN with a back-propagation 

optimization algorithm.  The network prediction accuracy is expressed in the form of 

“confusion matrices” instead of the common regression plots.  A confusion matrix encloses 

information about actual and predicted patterns.  The matrix has two dimensions, one with 

the actual pattern or “class” of an object, and the other with the pattern as predicted from the 

ANN. A basic confusion matrix with patterns P1, P2, and Pn is presented in Figure 71, where 

Nij indicates the number of samples actually belonging to class Pi but classified by the ANN 

as class Pj [57]. 

Predicted 
P1 … Pj … Pn 

A
ct

u
al

 

P1 N11 N1j N1n 

⁞ 
Pi 

⁞ 
Ni1 

⁞ 
… Nij … 

⁞ 
Nin 

Pn Nn1 Nnj Nnn 

Figure 71 
Pattern Recognition Confusion Matrix 

Two main performance indicators can be calculated from the confusion matrix; accuracy and 

precision. Accuracy is the proportion of total predictions that were correct, and precision is a 

measure of the accuracy for a specific class [57]: 

Accuracy  ∑  N  / ∑  ∑  N  (42)

Precision  	 N / ∑  N  (43) 

Procedure Overview 

To develop the enhanced decision-making tool, the following steps were conducted:   

 Step 1: Initial rehabilitation decisions were selected based on the Louisiana current 

decision matrix; see Table 3. 

 Step 2: The SCI was calculated using SNRWD0.1 as the SNeff and the required SN for a 

design life of 10 years as the SNreq. 

 Step 3: Enhanced decision were determined by utilizing the aforementioned enhanced 

decision trees, see Figures 67 and 68. 
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Enhanced 
Initial Decision---+ Decision Tree - Enhanced Decision 

(step 4) 

Decision 
Matrix 
ste 1 

PMS Database 
+ 

RWD Measurments 

I 
Overlay 
Design 
(step 5) 

Target Layer 

Functional Class +Surface Distresses 
+ Traffic ESALs + SNRWD0.1 

1-----. Input Layer 

 Step 4: Overlays were designed by utilizing the SNRWD0.1 instead of the 50% loss in the 

structural capacity assumption. 

 Step 5: An ANN was trained by feeding the input layer with the PMS data and SNRWD0.1, 

and the output (target) layer was fed with the final enhanced decisions obtained from 

Steps 3 and 4. Figure 72 shows an overview of the developed procedure. 

Figure 72 
Overview of the system developing procedure 

Develop the Pattern Recognition System 

An ANN-based pattern recognition system was developed to provide decision makers with a 

quick and accurate tool to apply the enhanced decision matrix and the proposed overlay 

design methodology.  A multilayered feed-forward ANN was selected with a hard-lim 

transfer function, which develops outputs in the form of “0” or “1” as illustrated in Figure 17.  

The network utilizes a scaled conjugate gradient backpropagation training algorithm 

(trainscg), and the errors are represented in the form of the mean square error (MSE).  The 
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network architecture consisted of three layers; an input layer of 8 neurons; a hidden layer of 

20 neurons; and a target (output) layer of 7 neurons.  The number of neurons in the hidden 

layer was selected based on an iterative process.  The criterion was to select the least number 

of hidden neurons without affecting the network performance to avoid overfitting.  

Network Inputs. The simplest set of inputs that correlated with the enhanced 

decision process and that required no optimization analysis to be conducted by the PMS 

engineers were selected and were fed to the ANN input layer.  Calculation of the SCI 

required the SNreq to be optimized based on the AASHTO 1993 flexible pavement design 

equation; therefore, it was not implemented in the ANN model.  Based on equation (31) and 

the AASHTO overlay design model, the SCI is a function of the SNRWD0.1, the traffic ESALs, 

the subgrade modulus of resilience (Mr), allowable loss in pavement serviceability index 

(ΔPSI), and the design reliability.  The design reliability and ΔPSI are commonly assigned 

the values of 90% and 2.5, respectively. The Mr values for the tested road segments were 

assumed to be 9,000 psi according to the DOTD soil maps for District 05; however, this 

assumption may be changed as needed.  Based on these assumptions, the SCI would be a 

function of the SNRWD0.1 and the traffic ESALs. Therefore, the ANN input layer was fed 

with the SNRWD0.1, the traffic ESALs, and the pavement surface distresses utilized in the 

decision matrix shown in Table 3.  In addition, a neuron in the input layer was assigned to 

define the segment functional class (arterials or collector).  In the case of arterials, an input of 

“1” was defined, and in the case of collectors, an input of “2” was defined.  

Network Targets. The final decisions obtained from the enhanced decision 

flowchart (Step 4) and the proposed overlay design procedure (Step 5) were used to feed the 

network output (target) layer. An overview of the steps followed to develop the ANN 

network is shown in Figure 72. Surface distresses obtained from the PMS database were first 

used to determine the initial M&R decisions through the current decision matrix, see Table 3.  

The initial decisions along with the corresponding SCI values were then used into the 

enhanced decision flowcharts (see Figures 67 and 68) to determine the enhanced decisions.  

The modified overlay design procedure was used to design the overlay, if applicable, and to 

reach the final treatment selection.  The final decisions were then defined as targets (outputs) 

to the ANN-based pattern recognition system.  On the other hand, the pavement surface 

distresses data, the road segment functional class, the traffic data, and the SNRWD0.1 were 

defined as independent inputs to the ANN-based pattern recognition system.  Finally, the 

system was trained to correlate between the inputs and the targets.    

More details about the ANN structure are shown in Figure 73.  As shown in this figure, 

pavement surface distresses data (ALCR, RUT, RNDM, PTCH, and RUFF), the road 
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segment functional class (arterial or collector), the traffic loads (ESALs), and the SNRWD0.1 

were incorporated into the ANN with eight neurons in the input layer.  On the other hand, the 

corresponding final M&R decisions were incorporated into the ANN with seven neurons in 

the target layer. A hidden (processing) layer of 20 neurons, all connected to each neuron in 

the input and the target layers, were used to establish adequate correlations between the 

network inputs and targets. 

Figure 73 
The ANN-based pattern recognition model structure 

Network Training and Performance  

Data from 5,174 road segments were used to build the ANN model, where each segment 

represents one data point. An oversampling technique was utilized so that the dataset is 

balanced, and each treatment decision is satisfactory represented.  The oversampling process 
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results in an increase in the dataset size to reach 6,828 data points.  In the DOTD database, 

the performance indices are reported on intervals of 0.1 mile, so that all segments have the 

same length (0.1 mile), so that no weighting was needed.  The data were divided into 70% for 

training, 15% for validation, and 15% for testing.  Training was halted when the validation 

set error stopped decreasing to avoid overfitting and to increase the generalization ability of 

the network.  The network training time was found to be 3.68 seconds.  The testing data set 

had no effect on the training, so it was used to provide an independent measure of the 

network performance.  

The confusion matrices showed an overall pattern prediction accuracy of 96.9%, which 

indicates the effectiveness of this method to predict maintenance and rehabilitation decisions.  

Figure 74 shows the confusion matrices for the training, testing, validation, and overall step 

for the pattern recognition system.  The matrices present Nij with its percentage, precision of 

every decision, and the overall accuracy as discussed earlier, see equations (42) and (43).  All 

data processing was performed off-line using a commercial software package (MATLAB 

R2013a, The MathWorks Inc.).   
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Where, 1= Do nothing, 2= Micro-surfacing, 3= Thin Overlay, 4= Medium Overlay, 5= Structural Overlay, 6= Surface 
Treatment, and 7= In-Place Stabilization. 

Figure 74 
Confusion matrices of the pattern recognition system for (a) the training data set 

(b) the validation data set (c) the testing data set (d) all data 

Forward Calculations 

Once the training phase is complete and the desired accuracy is achieved, the ANN model 

can be saved as a MATLAB file, which can be utilized to perform forward calculations, and 

predict maintenance and rehabilitation decisions.  The processing time of the forward 
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calculation for the 5,174 decisions was found to be 0.045 seconds.  The output of the forward 

calculation analysis would consist of a table in which the selected maintenance and 

rehabilitation decision assigned for each road segment is presented by a “1,” and the other 

non-selected rehabilitation decisions would have an output of “0.”  Table 45 presents an 

illustration of the forward calculations outputs.  In addition to the MATLAB file, a 

MATLAB code for the trained system was generated.  Such a code can be utilized to develop 

a program with a user-friendly interface, which can be used by PMS engineers in the state.   

Table 45 
Forward calculations output form 

Model Output 
Final Decision 

1* 2* 3* 4* 5* 6* 7* 
1 0 0 0 0 0 0 Do Nothing 
0 1 0 0 0 0 0 Micro-Surfacing 
0 0 1 0 0 0 0 Thin Overlay 
0 0 0 1 0 0 0 Medium Overlay 
0 0 0 0 1 0 0 Structural Overlay 
0 0 0 0 0 1 0 Surface Treatment 
0 0 0 0 0 0 1 In Place Stabilization 

Where, 1*= Do nothing, 2*= Micro-surfacing, 3*= Thin Overlay, 4*= Medium Overlay, 5*= Structural 
Overlay, 6*= Surface Treatment, and 7*= In Place Stabilization. 
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CONCLUSIONS 

The objective of this study was twofold. First, the study evaluated previously-developed 

structural capacity indicators in predicting pavement structural deficiency based on RWD 

measurements.  Based on this evaluation, the research team introduced modifications to 

improve prediction of pavement structural capacity.  Second, in this study a methodology 

was developed to integrate the most promising indicator into the Louisiana PMS decision 

matrix.  In addition, this project assessed the cost-efficiency of RWD testing in identifying 

and repairing structurally-deficient sections prior to reaching very poor conditions.  Based on 

the results of the study and the conducted cost analysis, the following conclusions were 

drawn: 

Structural Capacity Indicators 

 The SN showed the most promising capability in identifying structurally-deficient and 

structurally-sound pavement sections.  In addition, the SN model was found to have the 

highest uniformity coefficient (82%) among the different indices.  

 In light of the ANOVA analysis, the SN was concluded to be the structural capacity 

indicator that is less affected by pavement surface conditions, while the ZRI was 

concluded to be the structural capacity indicator that is most affected by pavement 

surface conditions.  Core samples investigation also supported this conclusion. 

 Sections considered structurally-deficient according to the SN thresholds were found to 

be the same as those considered deficient according to the RI thresholds. 

 The SN was selected as the most promising structural capacity indicator. 

Modifications to the SN Model 

 The modified SN model (SNRWD0.1) was developed to predict structural capacity from 

RWD measurements every 0.1 mile. The model showed an acceptable coefficient of 

determination (R2) of 0.7677 and a RMSE of 0.8. 

 Core samples showed that sections that were predicted to be structurally-deficient 

suffered from asphalt stripping and material deterioration problems. 

 Results support that the developed model provides additional information that 

complements the existing functional indices in PMS and that could be used to predict 

pavement structural conditions with an acceptable level of accuracy.  
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Structural Health Index 

 The Structural Health Index (SHI), on a scale from zero to 100, was developed to 

describe the structural integrity of pavement sections based on the backcalculated layer 

moduli of in-service pavements as predicted from FWD testing. 

 Evaluation and validation of the SHI was successful and indicated that the new index 

responded realistically to sections in poor and in good structural conditions. 

 It was shown that the new index provides additional information that complements the 

existing functional indices in PMS by successfully identifying structurally-deficient 

sections. 

Rates of Deterioration 

 A structural condition index (SCI) was developed based on SNRWD0.1 to categorize 

pavement sections according to structural conditions (e.g., very low, low, medium, etc.). 

 Based on the analysis of PMS data, sections with very low SCI values were observed to 

deteriorate significantly faster than those with high SCI values. 

 The rates of deterioration were found to be independent of the initial values of the 

performance indices for collectors; however, for the arterials, the rate of deterioration was 

found to be affected by both the SCI value and the initial values of the performance 

indices. 

 Overlay Design 

 An approach was developed to implement RWD measurements in AC overlay design 

procedure. The proposed procedure implements the SNRWD0.1 in the AASHTO 1993 

design method instead of assuming a 50% loss in structural capacity. 

 The new overlay design procedure would allow for optimum funding allocation and 

would assist the designer avoid both type I error (False Positive) and type II error (False 

Negative). 

 The proposed and the current design approaches were compared using a mechanistic AC 

overlay design method (Asphalt-Institute); the new design approach was more effective 

in avoiding type I and type II errors. 
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Subgrade Resilient Modulus 

 An ANN-based model was developed to estimate the subgrade resilient modulus based 

on RWD measurements.  The model was developed based on data obtained from the 

testing program conducted in Louisiana’s District 05 and was validated based on data 

obtained from a testing program conducted at the MnROAD facility in Minnesota. 

 The limits of agreement methodology showed that 95% of the differences between the Mr 

values calculated based on FWD and RWD measurements will not exceed the range of ± 

3 ksi, which is acceptable especially at the network level. 

 The ANN model showed acceptable accuracy in both the development and validation 

phases with coefficients of determination of 0.73 and 0.72, respectively.  The RMSE was 

found 12% and 8% in the development and the validation phase, respectively. 

Cost Effectiveness Analysis of RWD Testing 

 The SCI was converted into a scaled indicator from 0 to 100 (SSCI), and its incorporation 

into the PMS decision matrices was developed. 

 Two enhanced decision trees for collectors and arterials were developed for 

demonstrating the incorporation of RWD measurements and the SSCI into the PMS 

decision making process. 

 The implementation of RWD measurements into PMS decision making process as well as 

the State overlay design procedure would provide significant savings to the Department if 

applied on relatively high volume roads with an AADT of 5,000 or more (e.g., 

Interstates, Arterials, and Major Collectors). 

Development of a One-Step Decision Making Tool 

 An ANN-based pattern recognition system was trained and validated based on pavement 

condition data and RWD measurements-based SN to arrive at the most optimum M&R 

decisions. 

 The developed model showed an acceptable overall maintenance and rehabilitation 

decision prediction accuracy of 96.9%. 

 High model generalization ability was demonstrated as the prediction accuracy of the 

testing data set (which was not used in the model training) was 96.2%. 
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RECOMMENDATIONS 

Based on the findings and the results of this project, it is recommended to regularly test the 

road segments in the State trafficked with an AADT of 5,000 or more using RWD at a 

frequency of once every four years. In addition, continuous deflection data should be 

incorporated into the Louisiana PMS for treatments’ selection as well as the State overlay 

design procedure. The effective pavement structural number is recommended to be used in 

the overlay design procedure instead of the current practice of assuming 50% loss in the 

original structural capacity. The proposed modification to the overlay design procedure is 

implementation-ready and should be utilized by the Department to maximize savings to the 

State from using RWD.  The following future research activities are also recommended: 

 Additional RWD and FWD comparison testing is recommended to be conducted 

throughout the state of Louisiana to validate and fine-tune the models and procedures 

presented in this report. 

 Continuous pavement deflection testing such as RWD is recommended to be performed 

at least every 4 years to monitor pavement structural conditions at the network level. 

 Pavement deterioration rates at different SCI intervals should be monitored before and 

after applying treatments to update the enhanced decision trees.  
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ACRONYMS, ABBREVIATIONS, AND SYMBOLS 

AADT Annual Average Daily Traffic 

AASHTO American Association of State Highway and Transportation  

Officials 

AC   Asphalt Concrete 

ADT   Average Daily Traffic 

ALCR   Alligator Cracking Index 

ANOVA Analysis of Variance 

ARAN   Automatic Road Analyzer 

CM   Corrective Maintenance 

D0 Maximum Surface Deflection 

DN   Do Nothing 

DOTD Department of Transportation and Development 

ESAL   Equivalent Single Axle Load 

FHWA   Federal Highway Administration 

ft.   foot (feet) 

FWD   Falling Weight Deflectometer 

GPR   Ground Penetrating Radar 

HMA   Hot Mix Asphalt 

IHS Interstate Highway Significance 

IRI   International Roughness Index 

in. inch(es) 

ksi Kilo pounds per square inch 

lb. pound(s) 

LTRC   Louisiana Transportation Research Center 

MATT   Materials Testing System 

NHS National Highway of Significance 

PCC   Portland Cement Concrete 

PCI Pavement Condition Index 

PM   Preventive Maintenance 

PMS   Pavement Management System 

psi Pounds per square inch 

PTCH Patching Index 

RC Rehabilitation/Reconstruction 

RHS Rural Highway of Significance 

RI Rolling Wheel Deflectometer Index 
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RM   Restorative Maintenance 

RNDM  Random Cracking Index 

RUFF   Roughness Index 

RUT   Rutting Index 

RWD Rolling Wheel Deflectometer 

SCI   Structural Condition Index 

SHI   Structural Health Index 

SHRP Strategic Highway Research Program 

SN Structural Number   

SQL   Structure Query Language 

SSCI Scaled Structural Condition Index 

SHS State Highway of Significance 

TAND   Highway Need System 

TOPS   Tracking of Projects System 

TSD   Traffic Speed Deflectometer 

USDOT United States Department of Transportation 

ZRI Zone Rolling Wheel Deflectometer Index 
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APPENDIX 

Structurally Deficient Sections According to Each Indicator  

Table 46 
List of structural deficient section based on SN 

Control 
Section 

SN AVG 
Ruff 

AVG 
ALC 

AVG 
RUT 

AVG PCI AVG PTCH RNDM 
AVG 

167-04 2.3 73.8 85.6 95.7 76.4 86.2 88.5 

172-30 2.4 62.8 82.7 91.2 70.5 84.6 89.8 

328-03 2.2 58.6 75.1 93.2 66.6 88.0 78.3 

331-01 2.0 49.0 76.1 85.8 55.3 65.5 88.1 

332-02 1.5 56.1 68.4 91.6 51.7 46.1 71.7 

818-03 2.4 67.9 98.3 86.8 78.4 94.6 99.2 

160-02 1.9 60.8 70.9 82.0 62.9 84.9 75.7 

161-06 2.1 75.7 97.6 92.2 82.6 97.0 89.5 

164-04 2.6 80.0 75.9 88.7 73.1 89.1 79.8 

166-04 2.4 67.3 77.4 92.0 63.2 58.1 83.1 

184-01 1.8 76.9 95.2 96.6 84.0 98.8 90.1 

319-05 2.5 75.3 99.5 97.6 82.8 89.8 98.3 

328-02 1.0 65.6 74.2 95.0 66.3 75.0 81.3 

51-08 3.0 79.0 71.0 82.8 72.0 96.9 74.6 

161-03 2.2 71.0 100.0 79.5 79.1 98.6 99.6 

161-08 2.8 76.4 98.8 74.8 79.6 100.0 99.9 

333-03 3.1 75.6 99.6 68.9 73.3 85.2 99.9 

818-01 2.6 64.6 82.3 89.4 70.4 80.7 86.8 

818-08 2.4 64.1 68.3 79.7 62.1 71.2 77.2 
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Table 47 
List of structural deficient section based on RI 

Control 
Section 

RI AVG 
Ruff 

AVG 
ALC 

AVG 
RUT 

AVG PCI AVG PTCH RNDM 
AVG 

167-04 142.2 73.8 85.6 95.7 76.4 86.2 88.5 

172-30 150.2 62.8 82.7 91.2 70.5 84.6 89.8 

328-03 161.4 58.6 75.1 93.2 66.6 88.0 78.3 

331-01 170.1 49.0 76.1 85.8 55.3 65.5 88.1 

332-02 226.2 56.1 68.4 91.6 51.7 46.1 71.7 

818-03 130.4 67.9 98.3 86.8 78.4 94.6 99.2 

157-02 111.6 73.3 98.6 95.2 84.1 97.5 99.1 

160-02 153.7 60.8 70.9 82.0 62.9 84.9 75.7 

161-06 157.0 75.7 97.6 92.2 82.6 97.0 89.5 

164-04 128.2 79.8 75.9 88.7 73.1 89.1 79.8 

166-04 149.6 67.3 77.4 92.0 63.2 58.1 83.1 

171-03 119.0 75.4 82.0 93.2 79.0 99.3 85.7 

184-01 193.5 76.9 95.2 96.6 84.0 98.8 90.1 

51-08 97.4 79.0 71.0 82.8 72.0 96.9 74.6 

161-03 145.3 71.0 100.0 79.5 79.1 98.6 99.6 

161-08 110.8 76.4 98.8 74.8 79.6 100.0 99.9 

318-02 99.6 67.5 76.7 94.8 66.4 71.2 84.2 

325-01 88.4 72.8 92.4 97.3 79.6 90.8 91.3 

333-02 100.7 80.3 91.8 83.9 75.5 78.3 88.9 

333-03 106.2 75.6 99.6 68.9 73.3 85.2 99.9 

818-01 108.3 64.6 82.3 89.4 70.4 80.7 86.8 

818-08 126.5 64.1 68.3 79.7 62.1 71.2 77.2 
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Table 48 
List of structural deficient section based on ZRI 

Control 
Section 

ZRI AVG 
Ruff 

AVG 
ALC 

AVG 
RUT 

AVG PCI AVG PTCH RNDM 
AVG 

296-02 234.3 51.6 65.7 93.2 42.7 24.0 82.2 

318-01 200.9 75.4 100.0 88.4 77.8 73.6 100.0 

328-03 250.9 53.8 65.3 87.6 61.6 82.0 70.5 

332-02 238.4 64.2 67.9 98.0 56.3 50.5 67.0 

818-03 307.6 70.0 100.0 83.6 80.4 100.0 100.0 

834-08 212.9 62.0 100.0 90.8 78.0 100.0 100.0 

862-04 230.9 75.0 49.5 91.6 60.8 66.7 82.4 

68-01 222.6 83.8 73.4 93.2 79.2 97.6 83.7 

68-02 297.0 76.6 95.4 91.6 85.2 100.0 97.4 

164-04 185.6 55.0 70.2 66.8 61.5 100.0 79.4 

166-04 228.5 78.4 94.2 91.6 85.4 98.0 93.5 

171-03 197.4 76.0 77.0 80.4 76.9 100.0 89.3 

184-01 345.5 77.4 96.8 98.0 85.2 100.0 89.0 

161-03 270.0 43.8 100.0 81.2 66.4 100.0 100.0 

161-08 206.9 71.6 100.0 72.4 77.1 100.0 97.9 

185-03 282.4 78.6 91.7 94.8 83.2 100.0 83.7 

325-01 205.7 54.6 98.0 98.0 72.3 100.0 83.7 

333-01 157.3 85.8 100.0 94.8 91.4 100.0 100.0 

333-03 223.3 78.2 100.0 68.4 77.9 100.0 100.0 

818-01 201.6 70.4 69.0 85.2 71.2 77.4 79.2 
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	INTRODUCTION 
	INTRODUCTION 
	Pavement condition evaluation is considered the most important step in the selection of cost-effective maintenance and/or rehabilitation strategies.  Commonly, non-structural factors such as surface distresses and ride quality have been used as the main indicators of in-service pavement conditions [1].  Yet, recent research found that there is a little statistical correlation between pavement structural and functional conditions [2].  Therefore, many agencies are working on implementing structural capacity 
	DOTD has established a comprehensive pavement management system through which the pavement network is surveyed once every two years [7].  The Automatic Road Analyzer (ARAN) vehicle is used to collect pavement surface condition data such as cracking, rutting, and roughness. However, no structural condition data are collected by the state to assist in the process of selecting a suitable treatment strategy, which may lead to two types of errors and loss of state funds because of the lack of consideration of st
	Literature Review 
	DOTD started to conduct windshield surveys in the early 1970s to establish a pavement distress data collection system, which evolved to videotaping in 1992, and to automatic collection in 1995 [9]. Currently, the Louisiana pavement network is surveyed every two years to collect and analyze pavement distress data.  All nine districts in Louisiana are included in the PMS collection protocol. 
	The distresses data collected by DOTD PMS include International Roughness Index (IRI), cracking, rutting depth, patching, and faulting.  The Louisiana PMS classifies longitudinal and transverse cracking as random cracks, which may be confusing and cause inadequate rehabilitation decisions, as each type of distresses has different causes and failure mechanisms [9].  The distress data for all pavements are based on a reference location system, which consists of control sections divided into log miles.  The pa
	th

	Louisiana Pavement Management System 
	The pavement network in Louisiana is divided into nine districts as shown in Figure 1.  The Louisiana highway network is the 32 largest in the United States, which consists of more than 60,000 center lane miles and more than 13,000 bridges.  The pavement network is categorized based on road function as Interstate Highways, Freeway and Expressway, Principal Arterials, Minor Arterials, Collectors, and Local Roads [9]. Yet, for the convenience of data analysis and budget allocation, PMS office has modified the
	nd

	Table 1 Louisiana highway network functional classification  
	Classification 
	Classification 
	Classification 
	Length (miles) 
	Percentage 

	HIS 
	HIS 
	893 
	5.4% 

	NHS 
	NHS 
	1,550 
	9.3% 

	SHS 
	SHS 
	7,043 
	42.2% 

	RHS 
	RHS 
	7,184 
	43.1% 


	Figure
	Figure 1 DOTD pavement network districts [9] 
	Louisiana PMS Data Collection. When collecting data, whether the images are right-of-way images or pavement surface images, the Department follows a general rule in relation to direction. The primary direction or Direction 1, in most cases, travels from south to north or from west to east.  The opposite direction, also referred to as the secondary direction or Direction 2, travels north to south and from east to west as shown in Figure 2 [10]. 
	Figure
	Figure 2 Primary and secondary direction for collecting data [10] 
	DOTD utilizes a special vehicle known as the Automatic Road Analyzer (ARAN) to survey the pavement network and collect pavement surface conditions data once every two years.  This specific vehicle, shown in Figure 3, is equipped with cameras, lasers, sensors and computers to collect high-definition digital images of the pavement surface and right of way and electronic data of pavement distresses namely cracking, rutting, faulting, IRI, and macrotexture for both primary (i.e., South to North or West to East)
	th

	Figure
	Figure 3 ARAN vehicle used by LA PMS 
	Figure
	(a) 
	(a) 
	(a) 
	Image by ARAN 

	(b)
	(b)
	 Distress Identification 


	Figure
	Figure 4 Images by ARAN system for distress identification [10] 
	Louisiana Data Structure. The collected condition data are stored in the mainframe computer and are assigned a number according to the project.  The project number consists of nine digits; the first five digits refer to the control section and the remaining four digits refer to the project number performed on the control section [9]. The material type and thickness information of asphalt, base, and subbase layers are located under Menu/Project/Roadway Xsec in Material Testing System (MATT) and the surface t
	Figure
	Figure 5 DOTD mainframe menu view [12] 
	The pavement data related to materials, traffic, and project are stored in separate databases and could be accessed and updated by authorized personnel in the different sections.  In some cases, the data stored in different databases could be duplicate or may conflict [12]. All databases may be accessed through the mainframe menu system. 
	Louisiana PMS Data Storage. The collected condition data for the PMS are stored in a Structure Query Language (SQL) enterprise database used by Deighton Transportation Infrastructure Management System (DTIMS) and made available to end users through DOTD Pavement Management Intranet Web Portal, Visiweb, and IVision (Video Log view linked to pavement condition data). 
	Louisiana PMS Performance Prediction Models. Future pavement conditions can be predicted by performance models.  Performance models can be utilized to determine the required maintenance and/or rehabilitation treatment as well as the deterioration rate and remaining service life (RSL) of the pavement.  Performance models are functions of traffic loads, traffic volumes, material properties, weather data, and pavement type [7]. 
	Empirical (Regression) models are used to predict pavement performance.  The relation between performance index and age are plotted using performance curves for each pavement family.  Pavement families are defined based on pavement type (composite, asphalt, jointed concrete, and continuously reinforced concrete pavements) and highway classification (i.e., IHS, NHS, SHS, and RHS) [9]. Distress index models currently used by DOTD are based on at least six years of data collected at two-year intervals.  The mo
	Louisiana PMS Data Analysis and Decision Matrix. Collected data are reported every 0.1 mile and are analyzed to calculate the Pavement Condition Index (PCI) on a scale from zero to 100.  The PCI varies from 95 to 100, 85 to 94, 65 to 84, 50 to 64, and 49 or less for very good, good, fair, poor, and very poor roads, respectively.  A number of threshold values are also used to trigger a specific course of maintenance and rehabilitation (M&R) actions [11].  For flexible pavements, the PCI is calculated as foll
	PCI = MAX (MIN (RNDM, ALCR, PTCH, RUFF, RUT), {AVG (RNDM, ALCR, PTCH, RUFF, RUT) – 0.85 STD (RNDM, ALCR, PTCH, RUFF, RUT)})  (1) 
	where, 
	RNDM = random cracking index;  
	ALCR = alligator cracking index;  
	ALCR = alligator cracking index;  
	PTCH = patch index; RUFF = roughness index; RUT = rutting index; STD = standard deviation. 

	Table 2 Louisiana PMS performance prediction models  
	Category 
	Category 
	Category 
	Equation 

	Alligator Cracking Arterial 
	Alligator Cracking Arterial 
	100 - 0.7027 * AGE 

	Alligator Cracking Collector 
	Alligator Cracking Collector 
	100 - 0.6795 * AGE 

	Alligator Cracking Interstate  
	Alligator Cracking Interstate  
	100 - 0.4172 * AGE 

	Patching Arterial 
	Patching Arterial 
	100 - 0.2130 * AGE 

	Patching Collector  
	Patching Collector  
	100 - 0.2628 * AGE 

	Patching Interstate 
	Patching Interstate 
	100 - 0.2183 * AGE 

	Random Cracking Arterial
	Random Cracking Arterial
	 100 - 1.6102 * AGE 

	Random Cracking Collector
	Random Cracking Collector
	 100 - 1.7534 * AGE 

	Random Cracking Interstate  
	Random Cracking Interstate  
	100 - 1.6102 * AGE 

	Roughness Arterial 
	Roughness Arterial 
	0.0003 * (AGE)3- 0.0391 * (AGE)2 - 0.7983 * (AGE) + 100 

	Roughness Collector 
	Roughness Collector 
	0.0002 * (AGE)3 - 0.0311 * (AGE)2 - 0.5665 * (AGE) + 100 

	Roughness Interstate 
	Roughness Interstate 
	0.0003 * (AGE)3 - 0.0391 * (AGE)2 - 0.7983 * (AGE) + 100 

	Rutting Arterial 
	Rutting Arterial 
	100 * EXP(-0.0121 * AGE) 

	Rutting Collector 
	Rutting Collector 
	100 * EXP(-0.008 * AGE) 

	Rutting Interstate 
	Rutting Interstate 
	100 * EXP(-0.0121 * AGE) 


	The treatment decision matrix used by DOTD PMS mainly depends on the surface distress indices and the highway functional class (interstate, arterial, and collector).  Table 3 presents the thresholds and trigger values, which are currently used by DOTD for treatment selection and decision making.  As shown in this table, no structural capacity indicator is currently implemented into the State PMS and treatment selection process. 
	Table 3 DOTD trigger values for rehabilitation strategies [10] 
	Treatment type 
	Treatment type 
	Treatment type 
	Alligator cracks 
	Random 
	Patching 
	Rutting 
	Roughness 

	Micro-surfacing on interstate  
	Micro-surfacing on interstate  
	≥98 
	≥98 
	≥98 
	≥80 <90 
	≥85 

	Thin overlay on interstate 
	Thin overlay on interstate 
	≥90 
	≥85 
	≥90 
	<80 
	≥85 <90 

	Medium overlay on interstate 
	Medium overlay on interstate 
	≥65 <90 
	<90 
	≥65 <90 
	<85 

	Structural overlay on interstate 
	Structural overlay on interstate 
	<65 
	<65 

	Micro-surfacing on arterial 
	Micro-surfacing on arterial 
	≥95 
	≥95 
	≥95 
	≥65 <80 
	≥80 

	Thin overlay on arterial 
	Thin overlay on arterial 
	≥90 
	≥80 <95 
	≥80 
	<65 
	≥70 <80 

	Medium overlay on arterial 
	Medium overlay on arterial 
	≥50 <90 
	<80 
	≥60 <80 
	<70 

	Structural overlay on arterial 
	Structural overlay on arterial 
	<50 
	<60 

	Polymer surface treatment on collector 
	Polymer surface treatment on collector 
	≥85 <95 
	≥80 <95 
	≥85 
	≥65 
	≥80 

	Micro-surfacing on collector 
	Micro-surfacing on collector 
	≥95 
	≥95 
	≥95 
	≥65 <80 
	≥80 

	Medium overlay on collector 
	Medium overlay on collector 
	≥60 <85 
	<80 
	≥65 <85 
	<65 
	≥60 <80 

	In place stabilization on collector 
	In place stabilization on collector 
	<60 
	<65 
	<60 


	Overview of RWD Equipment 
	The stationary nature of FWD limits its utilization at the network level; therefore, a number of moving deflection measurement devices were developed in the last decade.  A SHRP2 study selected the RWD as one of the most promising moving deflection measurement devices [13]. 
	The Rolling Wheel Deflectometer.  The most recent version of the RWD was developed by Applied Research Associates (ARA, Inc.) in collaboration with FHWA Office of Asset Management.  It consists of a 53-ft. long semitrailer applying a standard 18,000-lb. load on the pavement structure by means of a regular dual-tire assembly over the rear single axle [14]. A general view of the 53-ft. custom designed RWD trailer is shown in Figure 6.  
	The trailer is specifically designed to be long enough to separate the deflection basin, due to the 18-kip rear axle load, from the effect of the front axle load.  In addition, the trailer is long-enough to accommodate the aluminum beam so that the laser range needed to tolerate any bouncing of the trailer during operation could be minimized.   
	P
	Figure

	Figure 6 General overview of the RWD system 
	The latest version of the RWD, introduced in 2003, can collect deflections at traffic speeds.  Several modifications and upgrades were introduced to the RWD with respect to the laser sensors, data acquisition system, and software.  The laser collection system was moved between the tires, and a new procedure was introduced for laser calibration. The laser sensors are set to collect a reading at a fixed interval of 0.6 in. at all truck speeds.  Prior to the field testing program described in this study, a mor
	The whole deflection system of the beam and the laser sensors is housed in a thermal chamber to prevent external factors, such as wind and temperature fluctuation, from affecting the measurements during testing.  The beam laser has four laser sensors that are used concurrently to measure the pavement surface deflection due to the rear axle based on optical trigonometry, as shown in Figure 7.  The rear axle and wheels were designed and placed to prevent any conflict with laser paths.  A two-person crew, driv
	P
	Figure

	In the figure, h and h’ are the depth of the non-deflected and the deflected surface.  
	Figure 7 RWD deflection measurement system 
	RWD Studies in Louisiana.  A comprehensive testing program was conducted by DOTD in District 05, Louisiana, 2009.  The testing program aimed at assessing the capability of the RWD in evaluating pavements structural conditions, at the network-level.  The RWD field testing program consisted of two phases.  In the first phase, about 1,250 miles of the 
	RWD Studies in Louisiana.  A comprehensive testing program was conducted by DOTD in District 05, Louisiana, 2009.  The testing program aimed at assessing the capability of the RWD in evaluating pavements structural conditions, at the network-level.  The RWD field testing program consisted of two phases.  In the first phase, about 1,250 miles of the 
	asphalt road network in District 05 was tested using the RWD system based on ARA standard testing protocol.  In the second phase, 16 road-sections (each 1.5 miles), referred to as research sites, were tested and were used for a detailed evaluation of RWD technology.  The test plan consisted of conducting RWD and FWD measurements on the selected flexible pavement test sites.  The FWD testing was conducted within 24 hours of the completion of RWD testing [15]. The testing program data were utilized by Elseifi

	To assess the repeatability of the RWD measurements, three RWD runs were performed in each of the 16 research sites. The repeatability of the measurements was represented by the coefficient of variation (COV (%) = standard deviation x 100/ average).  The repeatability of the RWD measurements was concluded to be acceptable with a COV (%) ranging from 7 to 22% and with an average of 15%. It was worth noting that the measurements uniformity and repeatability was improved in the sites that were in good conditio
	Table 4 Correlation between RWD measurements repeatability and pavement conditions 
	Site ID 
	Site ID 
	Site ID 
	Average (COV)% 
	Pavement Condition 

	1 
	1 
	15 
	Fair 

	2 
	2 
	16 
	Good 

	3 
	3 
	13 
	Very good 

	4 
	4 
	8 
	Very good 

	5 
	5 
	14 
	Very good 

	6 
	6 
	7 
	Very good 

	7 
	7 
	13 
	Very good 

	8 
	8 
	20 
	Fair 

	9 
	9 
	17 
	Very good 

	10 
	10 
	16 
	Poor 

	11 
	11 
	19 
	Poor 

	12 
	12 
	22 
	Fair 

	13 
	13 
	18 
	Good 

	14 
	14 
	19 
	Poor 

	15 
	15 
	15 
	Good 

	16 
	16 
	16 
	Poor 


	To assess the effect of the RWD operational speed on the deflection measurements, RWD runs were performed at each of the 16 research sites at speeds of 20, 30, 40, 50, and 60 mph 
	To assess the effect of the RWD operational speed on the deflection measurements, RWD runs were performed at each of the 16 research sites at speeds of 20, 30, 40, 50, and 60 mph 
	up to the posted speed limit on each section.  The effect of the testing speed on the RWD measurements was minimal as shown in Figure 8.  In addition, a statistical analysis was conducted between the RWD measurements at the different testing speeds (except the 60 mph speed as only one site was tested at this speed).  According to the statistical analysis, the RWD measurements at the different testing speeds were found to be statistically equal at a 95% confidence level with a p-value of 0.355.  This finding
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	Figure 8 Variation of the RWD measurements with respect to the operational speed 
	RWD deflections were compared to the FWD maximum surface deflections at a load of 9,000 lbs., for the 16 research sites, as shown in Figure 9.  It was noted that the scattering and uniformity of the FWD and RWD data correlated well with the conditions of the roadway, as shown in Figure 10. Both test methods reflected pavement conditions and structural integrity of the road network by providing for a greater average deflection and scattering for sites in poor conditions. RWD deflection measurements were in g
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	Figure 9 Average RWD measurements vs average FWD measurements at the 16 research sites 
	100 90 80 70 
	Deflection (mils)
	60 50 40 30 20 10 0 
	RWD FWD Site 4 hac = 1.75'' Very Good Site 5 hac = 8.50'' Very Good Site 6 hac = 8.50'' Very Good 
	4.013 4.163 4.313 4.463 4.613 4.763 4.913 5.063 5.213 5.363 
	-1.088 1.238 1.388 1.538 1.688 1.838 1.988 2.138 2.288 2.438 5.013 5.163 5.313 5.463 5.613 5.763 5.913 6.063 6.213 6.363 
	Logmile 
	(a) 
	100 90 80 70 
	Deflection (mils)
	60 50 40 30 20 10 0 
	RWD FWD Site 10 hac = 9.50'' Poor Site 11 hac = 4.00'' Poor Site 12 hac = 6.00'' Fair 
	3.013 3.163 3.313 3.463 3.613 3.763 3.913 4.063 4.213 4.363 
	-4.988 5.138 5.288 5.438 5.588 5.738 5.888 6.038 6.188 6.338 4.013 4.163 4.313 4.463 4.613 4.763 4.913 5.063 5.213 5.363 
	Logmile 
	(b) 
	Figure 10 RWD measurements vs. FWD measurements for (a) sites in very good conditions and (b) sites in poor and fair conditions [15] 
	Zhang and co-authors investigated the capability of the RWD technology in avoiding Type I and Type II errors when making treatment recommendations [17]. One example of Type I error is assigning a structural treatment (e.g., reconstruction or medium overlay) to a pavement section in good structural condition.  On the other hand, an example of Type II error is to assign a functional treatment (e.g., microsurfacing or thin overlay) to a pavement section in poor structural condition.  To achieve these objective
	0.1 mile and based on the RWD data; namely, the Zone RWD Index (ZRI), was used [17]. 
	All the elements of 0.1-mile pavement segments, tested with the RWD, were sorted based on the thickness of the Asphalt Concrete (AC) layer as shown in Table 5.  Furthermore, for each AC layer thickness group, a Cumulative Distribution Function (CDF) was developed with respect to the ZRI. By assuming that 50 % of the RWD-tested pavement segments were in poor structural condition, ZRI thresholds were determined.  According to the authors, a pavement segment with ZRI > the 50 percentile of ZRI CDF would need s
	Table 5 Pavement segments groups according to the AC layer thickness [17] 
	Group Number 
	Group Number 
	Group Number 
	AC layer Thickness Group (in.) 
	Number of 0.1-mile segments 

	1 
	1 
	0-2 
	878 

	2 
	2 
	2-3 
	1,366 

	3 
	3 
	3-4 
	1,690 

	4 
	4 
	4-5 
	1,575 

	5 
	5 
	5-6 
	969 

	6 
	6 
	6-7 
	675 

	7 
	7 
	7-8 
	645 

	8 
	8 
	8-9 
	649 

	9 
	9 
	9-10 
	440 

	10 
	10 
	10-11 
	305 

	11 
	11 
	11-12 
	252 
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	Figure 11 ZRI CDF for group number 3 [17] 
	By using the 50% ZRI CDF as a threshold for whether to assign structural treatments or functional treatments to the pavement sections, the percentages of Type I and Type II errors in the current DOTD practice were calculated.  Results showed that current treatment selection practices have a Type I error percentage of 34% and a Type II error percentage of 39.5%. Based on these findings, the authors recommended future PMS to implement 
	By using the 50% ZRI CDF as a threshold for whether to assign structural treatments or functional treatments to the pavement sections, the percentages of Type I and Type II errors in the current DOTD practice were calculated.  Results showed that current treatment selection practices have a Type I error percentage of 34% and a Type II error percentage of 39.5%. Based on these findings, the authors recommended future PMS to implement 
	structural indices in addition to the functional distress indices.  Further, the RWD was identified as one of the most promising technology to be utilized for pavement structural evaluation purposes [17]. 

	A study conducted by Gaspard and co-authors aimed at identifying RWD Index (RI) ranges for pavement treatment selection purposes.  A set of theories were used to achieve the study objectives; namely, multivariate statistical methods, and fuzzy logic [18]. 
	Statistical analysis revealed that the RI is not sufficient to assist in treatment selection practices used by DOTD.  However, the RI was found to be a successful parameter to distinguish between structurally-sound and structurally-deficient pavement conditions.  The authors recommended that structurally-sound pavements, based on the RI, not to receive a structural treatment or rehabilitation.  On the other hand, the authors recommended further FWD testing to be conducted on pavements in structurally-defici
	To minimize the effects of pavement thickness on RWD stiffness measurements, the data were stratified into thickness groups.  Further, the authors employed a combination of fuzzy statistics, rank ordering, inductive reasoning, and engineering judgment from the scientific field of fuzzy logic to reveal function-theoretic relationships for structurally-sound and structurally-deficient pavements, their interaction, RI threshold ranges based upon pavement thickness groups, and algorithms to assess the structura
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	Figure 12 Fuzzy functions for structurally sound and deficient groups 
	Figure 12 Fuzzy functions for structurally sound and deficient groups 


	Recent Studies on RWD. ARA, Inc. was contracted by the Pennsylvania Department of Transportation (PennDOT) to conduct a two-phase field testing program using the RWD in Pennsylvania. The first phase covered 288 miles of PennDOT road network in seven counties and was conducted in April 2013. In the second phase, a more detailed testing program was conducted on 16 road sections that were selected with different structural configurations and surface conditions [19]. 
	The testing scheme consisted of conducting both RWD, coring, and FWD measurements on each of the selected sites in the second phase.  FWD testing was conducted in the right wheel path at 200-ft intervals. Pavement temperature was recorded in conjunction with each test.  Surface deflections were corrected for variation in pavement temperature by shifting the measurements to a standard temperature of 68°F (20°C) using the BELLS and the AASHTO 1993 methods.  This method was also used to correct FWD deflection 
	Gedafa and co-workers presented the results of a research effort aimed at estimating pavement structural number based on FWD and/or RWD measurements [21, 22]. The study divided the state road network in Kansas into 23 categories based on functional class, pavement type, traffic loading, and roadway width.  For each roadway category, a regression model was developed to compute the SN from deflection data, traffic data, and surface condition indices.  The study concluded that the structural condition of in-se
	2

	 + 0.0062d – 0.0805D + 0.01D2-0.0008(d*D) 
	SN= 6.3763- 0.3364 d
	0
	0
	2
	0

	- 0.4115 log (EAL) + 0.1438 (log (EAL)) + 0.0836ETCR-0.0091 EFCR + 0.0004 EFCR - 0.4061 Rut (2) 
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	2

	where, 
	SN= pavement structural number; 
	= center deflection (mils); 
	d
	0

	D= pavement depth (in.); 
	EAL = equivalent standard daily traffic;  
	EFCR/ETCR=equivalent fatigue/transverse cracking; and  
	EFCR/ETCR=equivalent fatigue/transverse cracking; and  
	Rut=rut depth (in.). 

	A study was conducted at the MnROAD facility to evaluate the accuracy of two traffic speed deflections devices (TSD and RWD) and to assess the use of the continuous deflectometers at the network level [23].  To assess the accuracy of the two continuous deflectometers, 20 sensors were embedded in the MnROAD facility (strain gauges, pressure cells, geophones, accelerometer, etc.).  FWD was used to verify the performance of each sensor and to evaluate the correlation between RWD and FWD as well as the relation
	2
	2

	Researchers also used the installed geophones to calibrate the 3D Move software, which estimates pavement dynamic responses at any given point within the pavement structure using a continuum-based finite-layer approach.  The software was then used in identifying the most promising indices from continuous deflectometers measurements that best describe the structural capacity of the pavement.  Twelve structural capacity indicators were developed based on TSD and were recommended as the most promising indices 
	The SHRP 2 project (R06F) aimed at assessing the applicability of current continuous deflection devices to be incorporated in the development of practical and cost-effective pavement rehabilitation strategies, and the ability of such devices to screen structurally-deficient pavement sections and scope their needs at the network level [13].  The research team selected the TSD along with the RWD as the most promising devices to achieve these goals. In order to evaluate the effectiveness of the TSD, various ne
	The analysis of data indicated that both RWD and TSD provide adequate repeatability for network-level pavement management applications. Moreover, the TSD provides deflection measurements that are comparable to those collected using FWD; however, it was recommended to conduct further evaluation of the usefulness and cost-effectiveness of the TSD as well as the optimum method to interpret measurements from the device. 
	Incorporation of Structural Capacity in PMS 
	The effective structural number is typically calculated using the AASHTO 1993 pavement design guide procedure using FWD measurements.  This approach assumes that the subgrade resilient modulus can be obtained by relating it to the surface deflection at a large distance from the load as shown in equation (3):  
	..
	M
	 
	 

	 (3)
	∗ 
	∗ 

	where, 
	R = backcalculated subgrade-resilient modulus (psi); 
	M

	P = applied load (lbs.); and 
	r = deflection at a distance r from the center of the load (in.).  
	d

	The effective modulus, which describes the strength of all pavement layers above the subgrade, can be computed from FWD deflection measured at the center of the load plate knowing the subgrade resilient modulus and the total thickness of the pavement structure.  p) using equation (4): 
	These properties can be related and used to calculate the effective modulus (E
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	 (4) where, 
	p = effective modulus of all pavement layers above the subgrade (psi);   = deflection measured at the center of the load plate and adjusted to a standard temperature of 68F (in.); 
	E
	d
	0
	o

	q = load plate pressure (psi); a = load plate radius (in.); D = total thickness of pavement layers above the subgrade (in.); and R = subgrade-resilient modulus (psi). 
	M

	Using the total thickness of the pavement layers and the effective pavement modulus eff) can be computed using the following expression: 
	calculated from equation (5), the effective structural number (SN

	eff = 0.00045 * D * EP (5) 
	SN

	where, 
	D = total thickness of the pavement layers (in); and  
	p = effective pavement modulus of all layers above the subgrade (psi). 
	E

	Recent Studies on Implementing Structural Indicators in PMS. A study was conducted by Flora and co-workers that aimed at developing a structural condition based index scaled from zero to 100 and that could be implemented into the Indiana Department of Transportation (INDOT) PMS decision matrix.  Data considered in the study were collected from more than 10,000 one-mile sections in Indiana and encompassed weather data, distress surveys, pavement type, and FWD measurements [24]. Pavement types were classified
	SSI=100 1-∝e.... (6) 
	jk
	σγ 
	-β 

	where, 
	j, k = indices identifying the pavement family;  
	α, β, γ = regression coefficients; and 
	σ = center surface deflection (mils.). 
	The measurements were corrected due to temperature variation as follows: 
	1corrected= ασ (7) 
	D

	where, 
	α: correction factor determined from Table 6. 
	Table 6 Temperature correction factors [24] 
	Pavement temp (°F) 
	Pavement temp (°F) 
	Pavement temp (°F) 
	41 
	50 
	59 
	68 
	77 
	86 
	95 
	104 
	113 
	122 

	Correction factor 
	Correction factor 
	0.74 
	0.81 
	0.9 
	1 
	1.11 
	1.22 
	1.34 
	1.46 
	1.59 
	1.72 


	The regression coefficients for equation (6) were determined for each pavement family as shown in Table 7. 
	Table 7  Regression coefficients for the SSI model [24] 
	Pavement Family 
	Pavement Family 
	Pavement Family 
	α 
	β 
	γ 

	Flexible interstate 
	Flexible interstate 
	1.0013 
	40.303 
	3.853 

	Flexible NHS 
	Flexible NHS 
	1.0035 
	66.811 
	3.106 

	Flexible Non NHS 
	Flexible Non NHS 
	1.0124 
	100.838 
	2.586 

	Rigid interstate 
	Rigid interstate 
	1.0345 
	14.301 
	3.056 

	Rigid NHS 
	Rigid NHS 
	1.0017 
	338.056 
	4.995 

	Rigid Non NHS 
	Rigid Non NHS 
	1.0717 
	23.600 
	1.999 


	To implement the SSI as a structural capacity indicator into INDOT PMS decision matrices, trigger values and ranges were established. Researchers set the thresholds for excellent, very good, good, fair, and poor conditions for the SSI based on the ranges shown in Table 8. 
	Table 8 Trigger values for the SSI [24] 
	Pavement Family 
	Pavement Family 
	Pavement Family 
	Excellent 
	Very good 
	Good 
	Fair 
	Poor 

	Flexible interstate 
	Flexible interstate 
	95-100 
	90-95 
	85-90 
	80-85 
	<80 

	Flexible NHS 
	Flexible NHS 
	90-100 
	85-90 
	80-85 
	75-80 
	<75 

	Flexible Non NHS 
	Flexible Non NHS 
	85-100 
	80-85 
	75-80 
	70-75 
	<70 

	Rigid interstate 
	Rigid interstate 
	95-100 
	90-95 
	85-90 
	80-85 
	<80 

	Rigid NHS 
	Rigid NHS 
	90-100 
	85-90 
	80-85 
	75-80 
	<75 

	Rigid Non NHS 
	Rigid Non NHS 
	85-100 
	80-85 
	75-80 
	70-75 
	<70 


	Texas. A research study was conducted by Zhang and co-workers and aimed at characterizing the structural conditions of in-service pavements to be used in PMS applications at the network level [8].  The researchers evaluated available structural capacity eff) calculated based on FWD measurements, equation (5).  To define the threshold values that would be implemented in PMS, the researchers collected FWD data from 13,522 roadway sections located in different climatic regions in Texas; the selected sections h
	indicators and elected to use the pavement Structural Number (SN
	SN

	SCI   (8)
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	where, SCI= Structural Condition Index; 
	eff= existing (estimated) Structural Number; and  req= required Structural Number. 
	SN
	SN

	A mechanical approach was used to validate the developed SCI; the vertical compressive strain at the top of the subgrade and the horizontal tensile strain at the bottom of the surface layer were determined at each FWD test point for the seven sections, using the WESLEA program.  The Asphalt Institute (AI) rutting and fatigue equations were used in performance prediction [25]: 
	d=1.365*10 (εc) (9) 
	N
	-9
	-4.477

	where, d  = Number of repetitions for subgrade rutting failure; and c  = Vertical compressive strain at the top of the subgrade. 
	N
	ε

	-9-3.291-0.854        
	N
	f 
	=0.0796*10
	 (ε
	t
	)
	(E)

	(10) 
	where, f = Number of repetitions for fatigue failure; t = Horizontal tensile strain at the bottom of the AC layer; and E = Surface layer modulus.   
	N
	ε

	The numbers of repetitions for failure for both fatigue and rutting were then used to calculate the fatigue remaining life ratio and the rutting remaining life ratio, respectively: 
	P
	Fatigue.Remaining.Life.Ratio   (11) 
	..........

	Rutting.Remaining.Life.Ratio   (12)
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	The rutting/fatigue remaining life ratios were computed for each of the FWD test points and were then compared to the SCI value for the same point.  The coefficient of determination (R) was used in the comparison.  Both rutting and fatigue remaining life ratios for asphalt pavements showed good correlation with the SCI with R of 0.98 and 0.92, respectively. 
	2
	2

	Results also showed that the SCI was sensitive to pavement deterioration.  This conclusion was based on sensitivity analysis conducted between the TxDOT PMS data for years 2000, 2001, and 2002 and the matching deflection data. Based on this analysis, the authors 
	Results also showed that the SCI was sensitive to pavement deterioration.  This conclusion was based on sensitivity analysis conducted between the TxDOT PMS data for years 2000, 2001, and 2002 and the matching deflection data. Based on this analysis, the authors 
	recommended that the SCI be used as a screening tool at the network level for PMS applications. 

	A research project was conducted by Bryce and co-workers and aimed at developing a structural-based index and implementing it in the VDOT network-level pavement evaluation and rehabilitation process [2].  The research effort was divided into three main tasks (1) Develop a structural condition index at the network-level; (2) Find a methodology to implement this index into the VDOT pavement evaluation process; and (3) Identify pavement management applications and situations to use the structural index. 
	The researchers conducted a comprehensive study on the VDOT PMS evaluation process, decision matrices, and enhanced decision trees.  It was found that VDOT divides the pavement distress indices into two categories; load related distresses (LDR) and non-load related distresses (NDR); the lowest value of both indices is then called the critical condition index (CCI). The CCI has a scale from 1 to 100 and the value of 100 describes excellent conditions. The categories of pavement conditions according to the CC
	Table 9 Pavement condition categories [2] 
	Index Scale (CCI) 
	Index Scale (CCI) 
	Index Scale (CCI) 
	Pavement Condition 

	≥ 90 
	≥ 90 
	Excellent 

	70-89 
	70-89 
	Good 

	60-69 
	60-69 
	Fair 

	50-59 
	50-59 
	Poor 

	≤ 49 
	≤ 49 
	Very poor 


	The authors found that the decision process is divided into three steps; the first step is a decision matrix that has the pavement distresses as the inputs and decisions as outputs as shown in Table 10. The second step is a filter in which the CCI is implemented.  The final step is an enhanced decision tree where traffic data, pavement age, and structural efficiency are implemented.  The enhanced decision tree was the best candidate to implement a structural capacity indicator into the decision process. 
	Table 10 VDOT decision matrix for flexible pavement [2] 
	Table 10 VDOT decision matrix for flexible pavement [2] 
	Table 10 VDOT decision matrix for flexible pavement [2] 

	TR
	 Alligator cracking 

	Frequency
	Frequency
	 Rare 
	Occasional 
	Frequent 

	Severity 
	Severity 
	Low 
	Medium 
	High 
	Low 
	Medium 
	High 
	Low 
	Medium 
	High 

	Rutting
	Rutting
	˂ 10%
	None 
	DN 
	DN 
	CM 
	DN 
	CM 
	CM 
	PM 
	CM 
	RM 

	˂ 0.5in 
	˂ 0.5in 
	DN 
	DN 
	CM 
	DN 
	CM 
	CM 
	PM 
	CM 
	RM 

	˃ 0.5in 
	˃ 0.5in 
	CM1 
	CM 
	CM 
	CM 
	RM 
	RM 
	CM 
	RM 
	RM 

	˃ 10%
	˃ 10%
	None 
	DN 
	DN 
	CM 
	DN 
	CM 
	CM 
	PM 
	CM 
	RM 

	˂ 0.5in 
	˂ 0.5in 
	CM 
	CM 
	CM 
	CM 
	CM 
	CM 
	CM 
	RM 
	RM 

	˃ 0.5in 
	˃ 0.5in 
	RM 
	RM 
	RM 
	RM 
	RM 
	RM 
	RM 
	RC 
	RC 


	CM= Corrective Maintenance; DN= Do Nothing; PM= Preventive Maintenance; RC= Rehabilitation/Reconstruction; and RM= Restorative Maintenance 
	1 

	The critical condition index filter is a strategy to compare the decision from the decision matrix with thresholds values of the CCI.  For example, the following criteria are used for Interstate: 
	 
	 
	 
	For CCI values above 89, the treatment category is always DN. 

	 
	 
	For CCI values above 84, the treatment category is always DN or PM. 

	 
	 
	For CCI values below 60 the treatment category is at least CM, i.e., CM, RM or RC. 

	 
	 
	For CCI values below 49 the treatment category is at least RM, i.e., RM or RC. 

	 
	 
	For CCI values below 37 the treatment category is always RC. 


	Several structural capacity indices were studied by the authors to select the most promising one to be implemented in the enhanced decision tree.  The Structural Condition Index (SCI), which was developed by Texas Department of Transportation, was selected to be modified and implemented into the VDOT enhanced decision tree.  The SCI is calculated from FWD measurements after being normalized to 9,000 lb. load as follows: 
	P
	SCI= (13)
	 
	 

	where, Eff= k*SIP*Hp;  = 0.4728;  = -0.4810;  = 0.7581; 
	SN
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	k3
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	-D1.5HP; and 
	SIP= D
	0

	 = peak deflection under the 9,000 lb. load, and D1.5Hp = the deflection at a distance of 1.5 times the pavement depth. 
	D
	0

	The SCI was modified by the authors and was renamed as the Modified Structural Index (MSI) as shown in the following equation: 
	0.4728*D0-D1.5HP*Hp
	-0.481
	0.7581

	 MSI= (14)
	0.05716 * (log(ESAL) - 2.32 * log(Mr ) 9.07605)
	0.05716 * (log(ESAL) - 2.32 * log(Mr ) 9.07605)
	2.36777 

	where, = FWD central deflection (thousandth of an inch [mils.]); 1.5Hp= FWD deflection at a distance 1.5 x total pavement thickness (mils.); p = Pavement thickness (in.); ESAL = Equivalent single axle load; and r = Subgrade resilient modulus (ksi). 
	D
	0
	D
	H
	M

	An analysis was conducted to calculate the MSI from FWD measurements along Interstate I81, which had a length of 325 miles.  Thresholds were then defined for the MSI and were implemented into the enhanced decision tree taking into consideration the pavement age as shown in Table 11. 
	-

	Table 11 Modified Structural Index (MSI) thresholds [2] 
	Table 11 Modified Structural Index (MSI) thresholds [2] 
	Table 11 Modified Structural Index (MSI) thresholds [2] 

	Initial decision  
	Initial decision  
	DN 
	PM 
	CM 
	RM 
	RC 

	Pavement age (years) 
	Pavement age (years) 
	≤ 6 
	˃ 6 
	≤ 6 
	˃ 6 
	≤ 6 
	˃ 6 
	≤ 6 
	˃ 6 
	≤ 6 
	˃ 6 

	MSI 
	MSI 
	≥1 
	DN 
	PM 
	PM 
	PM 
	CM 
	CM 
	RM 
	RM 
	RC 
	RM 

	˂1 and ≥ 0.9 
	˂1 and ≥ 0.9 
	CM 
	RM 
	CM 
	RM 
	RM 
	RM 
	RC 
	RC 
	RC 
	RC 

	˂ 0.9 
	˂ 0.9 
	RM 
	RM 
	RM 
	RM 
	RC
	 RC 
	RC 
	RC 
	RC 
	RC 


	A study conducted by Tutumluer and Sarker to evaluate the use of Non-Destructive Testing (NDT) in evaluating pavement structural conditions as well as the use of NDT measurements in the design of asphalt overlays [26].  Testing was conducted by using FWD in five pavement sections located in two different counties in Illinois.  The Illinois Department of Transportation (IDOT) Dynatest FWD machine was used in the testing program with geophones spaced at 0, 12, 24, 36, 48, 60, and 72 in. from the center of the
	A study conducted by Tutumluer and Sarker to evaluate the use of Non-Destructive Testing (NDT) in evaluating pavement structural conditions as well as the use of NDT measurements in the design of asphalt overlays [26].  Testing was conducted by using FWD in five pavement sections located in two different counties in Illinois.  The Illinois Department of Transportation (IDOT) Dynatest FWD machine was used in the testing program with geophones spaced at 0, 12, 24, 36, 48, 60, and 72 in. from the center of the
	for FWD testing. Every section was tested at intervals of 200 ft.; however, some stations were eliminated from the study as non-decreasing deflection bowls were detected.  

	Upon completion of FWD testing, the deflection basin measurements were used to conduct backcalculation analysis of the pavement layers’ moduli [26]. A software based on Artificial Neural Network (ANN-Pro) was used in the backcalculation analysis.  A finite element-based software (ILLI-PAVE FE) was then used to determine the tensile strain at the bottom t. Thresholds for both ɛt and the surface deflection δv were then calculated based on the following equations: 
	of the asphalt layer ɛ
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	where, 
	f= number of ESALs to failure. 
	N

	By comparing threshold values calculated from equations (15) and (16) with the pavement response due to FWD loading, the need for an overlay was assessed as shown in Table 12.  In addition, by conducting the FWD testing after the construction of the overlay and calculating t and δv, the predicted life of the constructed overlay was estimated as shown in Table 13. 
	the new ɛ

	Table 12 Comparison between thresholds and FWD based measurements [26] 
	Table 12 Comparison between thresholds and FWD based measurements [26] 
	Table 12 Comparison between thresholds and FWD based measurements [26] 

	Section Number 
	Section Number 
	Design ESALs 
	ɛt threshold 
	δv (mil) threshold 
	ɛt FWD 
	δv (mil) FWD 
	Overlay required? 

	1 
	1 
	13,524 
	6.36E-4 
	45.36 
	6.13E-4 
	46.33 
	Yes 

	2 
	2 
	13,524 
	6.36E-4 
	45.36 
	6.06E-4 
	52.21 
	Yes 

	3 
	3 
	13,524 
	6.36E-4 
	45.36 
	4.52E-4 
	48.47 
	Yes 

	4 
	4 
	13,524 
	6.36E-4 
	45.36 
	5.32E-4 
	47.88 
	Yes 


	Table 13 Critical pavement response after overlay construction [26] 
	Section Number 
	Section Number 
	Section Number 
	ɛt FWD 
	δv (mil) FWD 
	Capacity > Demand (Design period= 20 years) 

	1 
	1 
	4.33E-4 
	33.42 
	Yes 

	2 
	2 
	4.44E-4 
	38.50 
	Yes 

	3 
	3 
	4.24E-4 
	34.22 
	Yes 

	4 
	4 
	4.56E-4 
	37.22 
	Yes 


	Artificial Neural Networks 
	In this study, artificial neural network (ANN) was utilized for two purposes.  First, ANN was used to estimate the subgrade resilient modulus (Mr) based on RWD measurements.  Second, ANN was used to develop a one-step decision making tool, that takes into consideration both structural and functional conditions of the pavement structure.  ANNs have commonly been used for solving complex engineering problems in the last three decades [27]. ANNs are parallel computing schemes that imitate biological neural net
	The Feed-Forward ANN.  The most commonly used ANN structure for both regression analysis and supervised classification is the feed-forward model.  This model topology consists of an input layer (i) in which the input independent variables are implemented, one or more processing (hidden) layers (j), and a target (output) layer (k) in which the depended variables are implemented [30].  The network topology is simulating the biological human brain.  Each layer consists of processing units called “neurons,” and
	Figure
	Figure 13 Example of feed-forward neural network structures 
	Figure 13 Example of feed-forward neural network structures 


	ANN Back-Propagation Training Algorithm.  The process of calculating the weights and biases of the ANN is called the learning process or the training process.  The most common used training procedure is the back-propagation error optimization algorithm. In this procedure, random values for weights and biases are assigned to the network connections and neurons, respectively. The network output (y) is then calculated based on the randomly assigned weights and biases and compared with the target value (t) to c
	E .ty tfw,b,x(17) 
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	where, E= error function; w= network weights; b= network biases; and x= in depended variables. 
	Equation (17) is then used as an objective function that needs to be minimized in a regular optimization problem.  This optimization problem is solved using the Stochastic Gradient Descent (SGD).  In the SGD method, the weight parameters are iteratively updated in the direction of the error loss function until a minimum is reached.  The process of updating the weight parameters to minimize the error is called backpropagation.  Figure 14 illustrates the concept of the backpropagation algorithm. 
	Figure
	Figure 14 Back propagation algorithm 
	Figure 14 Back propagation algorithm 


	ANN Forward Calculations.  After the network is trained, proper weights and biases are assigned to the network connections and neurons, respectively.  These weights and biases are then used by the network to conduct forward-calculation on new data.  First, the inputs to the hidden layer (j) are calculated by multiplying the input vector by the weight ij) and adding the hidden bias vector (bj), see Figure 13. Second, an activation function is used to calculate the outputs of the hidden layer (j).  The output
	matrix (W
	calculated by multiplying the hidden vector by the weight vector (W’
	values (b
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	where, k= the model output at layer k; j = number of neurons in the hidden layer; i = number of neurons in the input layer; and i = the input variables.  
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	 Figure 15 Logsig transfer function 
	 Figure 15 Logsig transfer function 


	ANN Transfer Functions. The ANN transfer function, also known as activation functions, are differentiable non-linear functions, applied to the weighted input of the neuron to produce the neuron output. By using transfer functions, ANNs acquire their non-linearity.  On other words, without activation functions, a neural network could not learn non-linear relationships. The most commonly used ANN transfer functions for regression analysis purposes are the logistic sigmoidal function (logsig), which produces o
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	Figure 16 Tansig transfer function 
	Figure 16 Tansig transfer function 
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	Figure 17 Hardlim transfer function 
	Figure 17 Hardlim transfer function 
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	OBJECTIVES 
	OBJECTIVES 
	The objective of this study was twofold.  First, this project evaluated structural capacity indicators previously developed in 09-1P and their effectiveness in predicting pavement structural conditions based on RWD measurements.  Based on this evaluation, the research team introduced modifications to improve prediction of pavement structural conditions and to allow for screening and identifying structurally-deficient locations in pavements based on a 0.1-mile test interval.  Second, a methodology was develo

	SCOPE 
	SCOPE 
	Measurements from the comprehensive testing program of the RWD conducted by DOTD in 2009, in District 05, were analyzed. Furthermore, the research team analyzed PMS data collected in District 05 from 2005 to 2013 to determine the rate of structural and functional deteriorations for pavements that are structurally deficient and those that are structurally sound. Current practices for selecting pavement maintenance and rehabilitation strategies were modified such that both structural and functional pavement c

	METHODOLOGY 
	METHODOLOGY 
	To achieve the study objectives, the research activities were divided into two phases.  In the first phase, a comprehensive review of Louisiana PMS and recent studies dealing with continuous deflection testing was conducted. In addition, a critical evaluation of the structural capacity indicators developed for RWD was performed based on the original RWD and FWD data sets collected in 2009 and the new PMS data collected in 2011 and 2013.  Based on this evaluation, modifications were suggested for the most pr
	Experimental Program 
	RWD Testing in Louisiana 
	The complete field testing program requested by DOTD consisted of two phases.  In the first phase, the asphalt road network (about 1,250 miles) in District 05, referred to as network sites, was tested using the RWD deflection system based on ARA, Inc. standard testing protocol. LTRC also selected 58 sections to be tested using FWD.  In the second phase, 16 road-sections (1.5 miles each), referred to as research sites, were selected and used for a detailed evaluation of the RWD technology as shown in Figure 
	In addition to RWD testing, the test plan in Phase II included conducting FWD testing on selected flexible and surface treatment pavement test sites.  The testing plan specified that FWD testing should be conducted within 24 hours following completion of RWD testing on the selected sites in order to maintain the same testing conditions.  The field testing program for RWD and FWD was conducted successfully in December 2009 with no major problems during the course of the experiment [14]. 
	To assess repeatability of the measurements and the effects of truck speed, triplicate runs were performed at different speeds of 20, 30, 40, 50, and 60 mph.  However, the test speed was restricted by the posted speed limits on a number of sites.  Only Site 7 was selected on the Interstate Highway System (I-20), which permitted testing at 60 mph.  However, testing at 50 mph was conducted on 8 of the 16 sites.  Road segments were also selected to represent different pavement conditions as described by the PC
	Figure
	Figure 18 Locations of the 16 research sites in District 05 [14] 
	Figure 18 Locations of the 16 research sites in District 05 [14] 


	Pavement temperature was recorded in conjunction with each test.  The pavement surface temperature ranged from 29.3 to 69.8°F (-1.5 to 21°C) with an average temperature of 48.2°F (9°C) during the testing process. To assist in the analysis, pavement design of the selected sites was obtained using cores and construction documents. Figure 19 shows the coring location for research Site 12, while Figure 20 shows the core sample for the same location, which provided accurate information about layer types and thic
	Figure
	Figure 19 Coring test section Site 12 [14] 
	Figure 19 Coring test section Site 12 [14] 


	Figure
	Figure 20 Core sample Site 12 [14] 
	Figure 20 Core sample Site 12 [14] 


	FWD Testing in Louisiana 
	Nondestructive FWD deflection testing was conducted to measure the load response characteristics of the pavement layers and subgrade.  Deflection testing was performed in accordance with ASTM D 4694, “Standard Test Method for Deflections with a Falling Weight-Type Impulse Load Device” and D 4695, “Standard Guide for General Pavement Deflection Measurements.”  The FWD device shown in Figure 21 was configured to have a 9-sensor array, with sensors spaced at 0, 8, 12, 18, 24, 36, 48, 60, and 72 in. from the lo
	Figure
	Figure 21 Illustration of the FWD test device used in the testing program [14] 
	Figure 21 Illustration of the FWD test device used in the testing program [14] 


	RWD Data Processing and Filtering 
	During RWD testing, laser deflection readings are measured at 0.6-in. intervals.  Irrelevant data such as measurements collected on top of a bridge, sharp horizontal and vertical curves, and at traffic signals were removed.  Erroneous data may also be obtained if the pavement surface is wet or in areas with severe cracking at the pavement surface. Valid deflection measurements were then averaged for two primary reasons: (a) minimizing the truck bouncing and vibration effects on the measured deflections and 
	P
	Figure

	Figure 22 Example of individual laser readings and deflections for Site 9 (315-02), LA 143 north of West Monroe (after ARA, Inc.) 
	MnROAD Testing Program 
	The present study made use of RWD data collected on the MnROAD testing facility for validation of the subgrade modulus of resilience model based on independently-collected data. The data were collected in 2013 during a comprehensive pavement deflection testing program conducted at the MnROAD facility in Minnesota [33].  The surveyed road network 
	The present study made use of RWD data collected on the MnROAD testing facility for validation of the subgrade modulus of resilience model based on independently-collected data. The data were collected in 2013 during a comprehensive pavement deflection testing program conducted at the MnROAD facility in Minnesota [33].  The surveyed road network 
	consists of a 3.5-mile mainline roadway (ML) with 45 sections and with “live traffic” as part of Interstate 94 near Albertville, Minnesota.  In addition, a 2.5-mile closed-loop low volume roadway (LVR) consisting of 28 sections was also surveyed; the section lengths were typically about 500 ft. In addition to the test sections along the mainline and low volume road of the MnROAD, an 18-mile segment in Wright County was also tested.  The segment is located about 20 miles from the MnROAD facility and was divi

	Figure
	Figure 23 Overview of the MnROAD facility 
	Figure 23 Overview of the MnROAD facility 


	Testing was conducted using the Traffic-Speed Deflectometer (TSD), RWD, and the Euro-consult Curvimeter; see Figure 24 [33].  FWD was used as a reference for comparison and evaluation purposes. Tested sections varied between flexible pavements, rigid pavements, and composite pavement sections.  Yet, the present study focused on RWD measurements; therefore, only RWD and FWD data collected on flexible pavements were considered.  The flexible pavement test segments at which both FWD and RWD measurements were c
	Figure
	Figure 24 MnROAD continuous deflection testing program [33] 
	Figure 24 MnROAD continuous deflection testing program [33] 


	Assess the Accuracy of the Developed Structural Capacity Indicators 
	The objective of this task was to analyze and evaluate the accuracy of the structural capacity indicators previously developed as part of Project 09-1P based on RWD testing.  To achieve this objective, the research team evaluated the structural deterioration of the sections that were predicted to be structurally-deficient based on the structural capacity indicators by analyzing the core samples and FWD measurements.  In addition, the research team compared the PMS data collected in 2013 in terms of structur
	RWD-Based Pavement Structural Capacity Indicators 
	During the original study, the research team observed that RWD describes the deterioration of the pavement structure through both an increase in the magnitude of the deflection and an increase in the scattering and variability of the deflection measurements.  Elseifi and coauthors introduced a parameter known as the RWD Index (RI) based on the average RWD deflection and the standard deviation for a 1.5-mile test interval [18]: 
	-

	                           RI = Avg. RWD deflection * Std. Dev. of RWD deflection  (21) 
	where, 
	2 or mils); 
	2 or mils); 
	RI = RWD Index (mm
	2

	Avg. RWD deflection = average deflection (mm or mils) measured on a road segment with a length of 1.5 miles; and 

	Std. Dev. of RWD deflection = standard deviation (mm or mils) of average RWD deflections in 1.5-mile test interval. 
	The RI index correlated reasonably well with the effective pavement structural number eff) determined from FWD.  Since RWD measurements are based on 0.1 mile of pavement segment, the zone RWD Index (ZRI) was introduced with a new definition of a structural index based on RWD data, which was defined as follows: 
	(SN

	                              ZRI = average RWD deflection * fourth root of variance  (22) 
	where, 
	ZRI is in mmor milsand the average of deflection and variance are based on the 0.1-mile pavement segment. 
	3/2 
	3/2 

	Based on the RI index and various expressions evaluated during the course of the original study (09-1P), the following relationship between SN- and RWD-measured parameters was introduced: 
	SN 6.37   1.39 lnSD............. (23)
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	where, 
	RI = RWD Index (mils) = Avg. RWD deflection * SD of RWD deflection; 
	2

	SD = standard deviation of RWD deflection on a road segment (mils); 
	RWD = Avg. RWD deflection measured on a road segment (mils); and 
	RWD = Pavement Structural Number based on RWD measurements.  
	SN

	Propose Modifications to the Most Promising Structural Capacity Indicator  
	Based on the results of the previous task, the most promising structural capacity indicator was selected to detect structurally-deficient pavements based on RWD testing.  In this task, RWD measurements were analyzed further to improve prediction and to ensure that the maximum accuracy would be achieved through these measurements.  To achieve this objective, the research team evaluated the assumptions made in the development of equations 
	(21) to (23) and modified the original model to improve prediction accuracy and to allow for assessing pavement structural conditions every 0.1 mile.  In this analysis, pavements were categorized based on thickness, type of base layer, and traffic volume during service.  The 
	(21) to (23) and modified the original model to improve prediction accuracy and to allow for assessing pavement structural conditions every 0.1 mile.  In this analysis, pavements were categorized based on thickness, type of base layer, and traffic volume during service.  The 
	main outcome of this task was an updated structural capacity indicator that can be used to identify structurally deficient pavements based on RWD testing and at a 0.1-mile test interval.  

	Develop a Structural Index Based on Backcalculated Layer Moduli 
	The objective of this task was to develop a structural index (from 0 to 100) that describes the structural integrity of pavement sections based on the backcalculated AC layer moduli of in-service pavements as predicted from FWD testing.  To achieve this objective, FWD-collected data were used in a backcalculation process; the backcalculation software, ELMOD 6, was used based on the equivalent thickness method.  The backcalculated moduli were correlated and categorized statistically to establish a structural
	Falling weight deflectometer measurements from 52 in-service pavement sections with a total length of approximately 320 miles were used to develop the structural index.  Furthermore, Ground Penetrating Radar (GPR) data were used in this task for pavement thickness information.  In addition to GPR testing, core samples were used to detect any materials deterioration underneath the pavement surface.  At least one core sample was available from each homogenous control section.  Core samples were also used to d
	Compare Rate of Deteriorations for Pavement Sections 
	In this task, the research team analyzed PMS data collected in District 05 from 2005 to 2013 to determine the rate of structural and functional deteriorations for pavements that are structurally deficient and those that are structurally sound.  Based on this analysis, the research team determined whether the rates of deterioration are significantly different for pavements that are structurally deficient and those that are structurally sound.  Results of this analysis were used in the subsequent tasks to ass
	To compare pavement levels of deterioration, the research team categorized the tested road segments into five categories based on structural conditions (e.g., excellent, good, fair…etc.).  The categorization process was based on thresholds obtained from the developed structural capacity indicators.  For each category, the PMS data at years from 2005 to 2013 were evaluated. Segments, which showed an increase in one or more of the performance indices during the analysis period, were eliminated since it indica
	Conduct an Overlay Design for the Selected Pavement Sections  
	Based on the data collected in previous tasks, and in the RWD testing program, the research team conducted an overlay design of selected pavement sections.  These sections included structurally-deficient and structurally-sound pavement sections in District 05.  The objective of these overlay designs, which were based on RWD measured deflections, was to quantify the difference in overlay thickness if RWD measurements are considered in the design process. 
	The overlay design was conducted according to DOTD current design practices and based on the assumptions of a 10-years design life and 2-in. milling.  The proposed design procedure considered the actual pavement structural capacity based on RWD measurements and compared the obtained designs with current practices adopted by DOTD office of design, which assumes 50% loss in structural capacity.   
	Investigate the Feasibility of Predicting the Subgrade Modulus from RWD Data 
	 and D) were used to develop an artificial neural network (ANN) model to predict the subgrade modulus.  The correlation between the proposed ANN model and the AASHTO 1993 FWD-based model were evaluated: 
	In this task, the two RWD deflection measurements (D
	0
	18

	M  (24)
	 
	.∗

	where, r = backcalculated subgrade-resilient modulus (psi);  P = applied load (pounds); and r = deflection at a distance r (in) from the center of the load (in). 
	∗
	M
	d

	Determine Cost Efficiency and Added Values of RWD Testing 
	The objective of this task was to evaluate the cost-efficiency of using RWD measurements in PMS activities at the network level and the benefits that may be obtained by adopting this test method in Louisiana.  To achieve this objective, monetary savings obtained by providing for the most cost effective rehabilitation treatment methods were compared against the cost of collecting and analyzing RWD deflection data.  Data needed in the cost-analysis were obtained from the analysis conducted in the previous tas
	Develop a One-Step Enhanced Decision Making Tool 
	The objective of this task was to develop a one-step enhanced decision-making tool that considers both structural and functional pavement conditions in treatment selection at the network level. To achieve this objective, an artificial neural network-based pattern recognition system was trained and validated using pavement condition data and RWD measurements-based SN to arrive at the most optimum maintenance and rehabilitation (M&R) decisions. The developed tool needed to be time-efficient and easy to use si

	DISCUSSION OF RESULTS 
	DISCUSSION OF RESULTS 
	Accuracy of Structural Capacity Indicators 
	Pavement structural capacity was predicted based on RWD measurements using the indicators presented in equations (21) to (23).  RWD data from 188 control sections in District 05 were considered in this analysis with a total length of 1,066 miles.  The center ) was the main input used from RWD measurements.  Performance indices were also extracted from PMS, namely, the Alligator Cracking Index (ALCR), the Rutting Index (RUT), the Roughness Index (RUFF), the Random Cracking Index (RNDM), the Patching Index (P
	deflection (D
	0

	To assess whether the structural capacity indicators are affected by pavement surface conditions; data from the 188 control sections were categorized into three groups according to the AC layer thickness: thin, which includes pavements with AC thickness less than 3 in., medium with AC thickness from 3 to 6 in., and thick sections with AC thickness more than 6 in. as shown in Table 14. 
	Table 14 Control sections classification according to AC thickness 
	Table 14 Control sections classification according to AC thickness 
	Table 14 Control sections classification according to AC thickness 

	Pavement Characteristics 
	Pavement Characteristics 
	Group 1 
	Group 2 
	Group 3 

	Pavement Class 
	Pavement Class 
	Thin 
	Medium 
	Thick 

	AC Thickness range (in.) 
	AC Thickness range (in.) 
	˂3 
	From 3 to 6  
	˃6 

	Number of control sections 
	Number of control sections 
	34 
	77 
	77 

	Total length (miles) 
	Total length (miles) 
	194 
	548 
	324 


	Statistical Analysis 
	An Analysis of Variance (ANOVA) was conducted on the aforementioned road categories to assess the influence of each pavement performance index on the structural capacity indicators. Results of the analysis are presented in Tables 15 to 17.  Statistical analysis was conducted at a 95% confidence level such that a P-value less than 0.05 indicates significant correlation. As shown in these tables, the ZRI was the structural capacity indicator that correlated the most with pavement performance surface indices. 
	Table 15 ANOVA results for thin sections 
	Table 15 ANOVA results for thin sections 
	Table 15 ANOVA results for thin sections 

	Indicator SN RI ZRI Indicator SN RI ZRI Indicator Ruff SN 0.1190 RI ZRI 
	Indicator SN RI ZRI Indicator SN RI ZRI Indicator Ruff SN 0.1190 RI ZRI 
	Ruff 0.1524 Ruff ALCR <.0001 0.7 <.0001 0.03 <.0001 0.70 ALCR 0.1029 0.1810 
	ALCR 0.4618 Table 16 ANOVA results for medium sections RUT PCI 0.2 0.01 0.02 0.001 0.07 0.052 Table 17 ANOVA results for thick sections Performance Indices RUT PCI 0.5050 0.5206 0.3475 0.5157 
	Performance Indices RUT PCI RNDM 0.6286 0.6440 0.4223 Performance Indices RNDM 0.6 0.3 
	PTCH PTCH 0.01 <.0001 0.0022 <.0001 RNDM PTCH 0.8393 0.0711 0.8428 0.6018 


	0.0195 0.3534 0.5348 0.5771 0.9250 0.0628 0.0528 <.0001 0.02 <.0001 0.30 <.0001 <.0001 
	0.0002 <.0001 0.3145 0.0182 0.0008 <.0001 <.0001 
	Uniformity Index 
	To evaluate the uniformity of each structural capacity indicator, the Uniformity Index (UI) was calculated for each control section for the ZRI, SN, and RI according to equation (25).  The average uniformity coefficient was calculated to be 82% for the SN model, 69% for the RI, and 62% for the ZRI. The uniformity distributions are shown in Figures 25 to 27 for the three structural capacity indicators. 
	UI%1  (25)
	UI%1  (25)
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	where, SD = standard deviation of the indicator for every control section; and AVG = Mean value of the indicator for every control section.  
	Since the road network in Louisiana PMS is divided into control sections such that each section has similar characteristics (i.e., traffic volume, pavement structure, and subgrade 
	type), variation of the structural conditions within the same control section is expected to be negligible.  Therefore, a suitable structural capacity indicator is expected to have a high uniformity index within the same control section.  As shown in Figures 25 to 27, the SN model had the most uniform prediction within the evaluated control sections, followed by the RI, and finally the ZRI. 
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	Figure 25 Uniformity histogram for SN 
	Figure 25 Uniformity histogram for SN 
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	Figure 26 Uniformity histogram for RI 
	Figure 26 Uniformity histogram for RI 
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	Figure 27 Uniformity histogram for ZRI 
	Figure 27 Uniformity histogram for ZRI 
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	Identification of Structurally Deficient Sections 
	To assess the relationship between the structural capacity indicators and in-situ pavement structural conditions, core samples and pavement condition data were analyzed for the lowest-ranked sections according to each approach. These sections were the 20% control sections that have the lowest SN, the 20% sections that have the largest RI, and the 20% control sections that have the largest ZRI. The thresholds for structurally deficiency were estimated from the cumulative distribution functions for each struc
	Table 18  Limiting thresholds for the three structural capacity indicators 
	Table 18  Limiting thresholds for the three structural capacity indicators 
	Table 18  Limiting thresholds for the three structural capacity indicators 

	Category 
	Category 
	SN 
	RI 
	ZRI 

	Thin 
	Thin 
	2.40 
	125.7 
	196 

	Medium 
	Medium 
	2.74 
	110.5 
	176 

	Thick 
	Thick 
	3.10 
	87.5 
	150 


	Comulative Percentage 
	120 100 80 60 40 20 0 
	ZRI at 20% = 196 
	0 100 200 300 400 500 
	0 100 200 300 400 500 


	ZRI 
	Figure 28  ZRI cumulative distribution function for thin sections 
	Using the thresholds presented in Table 18, the average values of the functional surface indicators for sections considered structurally-deficient were calculated and are shown in Tables 19 to 21. As shown in these tables, structurally deficient sections were in some cases in pavements with good surface conditions.  These results support the need to implement a pavement structural condition indicator into PMS in addition to the current functional indices. A list of identified pavement sections is presented 
	Table 19 Averages performance indices for sections below 20% SN thresholds 
	Table 19 Averages performance indices for sections below 20% SN thresholds 
	Table 19 Averages performance indices for sections below 20% SN thresholds 

	TR
	ALCR 
	RUT 
	RUFF 
	RNDM 
	PTCH 
	PCI 

	Thin 
	Thin 
	83.70 
	90.95 
	62.60 
	87.88 
	79.76 
	68.54 

	Medium 
	Medium 
	79.36 
	92.64 
	69.28 
	84.62 
	79.41 
	69.75 

	Thick 
	Thick 
	89.68 
	85.83 
	76.11 
	90.76 
	90.53 
	77.40 


	Table 20  Averages performance Indices for sections above 20% RI thresholds 
	Table 20  Averages performance Indices for sections above 20% RI thresholds 
	Table 20  Averages performance Indices for sections above 20% RI thresholds 

	Table 21 Averages performance Indices for sections above 20% ZRI thresholds 
	Table 21 Averages performance Indices for sections above 20% ZRI thresholds 

	TR
	ALCR 
	RUT 
	RUFF 
	RNDM 
	PTCH 
	PCI 

	Thin 
	Thin 
	83.73 
	90.94 
	62.63 
	87.88 
	79.76 
	68.53 

	Medium 
	Medium 
	82.25 
	92.77 
	70.87 
	85.77 
	81.51 
	71.90 

	Thick 
	Thick 
	89.68 
	85.84 
	76.11 
	90.76 
	90.53 
	77.40 

	TR
	ALCR 
	RUT 
	RUFF 
	RNDM 
	PTCH 
	PCI 

	Thin 
	Thin 
	75.23 
	91.48 
	66.26 
	82.85 
	74.74 
	65.73 

	Medium 
	Medium 
	80.46 
	95.57 
	77.02 
	84.97 
	94.47 
	76.50 

	Thick 
	Thick 
	92.16 
	85.60 
	77.83 
	94.40 
	98.44 
	81.06 


	Investigation of Cores 
	Table 22 categorizes structurally-deficient sections into three groups.  Group 1 includes sections that were classified as deficient based on the three structural capacity prediction approaches (i.e., SN, RI, and ZRI). Group 2 includes sections that were classified as deficient by only the SN and RI approaches, and Group 3 includes sections that were classified as deficient by only the ZRI. Cores’ conditions were correlated to the three groups to assess whether a section is either structurally deficient or 
	Table 22 Sections classifications for core samples study 
	Table 22 Sections classifications for core samples study 
	Table 22 Sections classifications for core samples study 

	Group ID 
	Group ID 
	SN 
	RI 
	ZRI 

	1 
	1 
	Deficient 
	Deficient 
	Deficient 

	2 
	2 
	Deficient 
	Deficient 
	Sound 

	3 
	3 
	Sound 
	Sound 
	Deficient 


	Group 1. This group includes sections that were classified as structurally deficient based on the three indicators. Investigation of core samples indicated that 85% of the sections in this group suffered from major to medium stripping in one or more of the AC layers, as shown in Figure 29. 
	Figure
	Figure 29  Example of severe stripping in control section 161-08 
	Figure 29  Example of severe stripping in control section 161-08 


	Group 2.  This group includes sections that were determined to be structurally deficient based on the SN and the RI approaches but not by the ZRI.  Investigation of core samples showed that 60% of the sections in this group suffered from major to medium stripping in one or more of the AC layers as shown in Figure 30.  This indicates that the SN and RI approaches successfully identified these sections as structurally-deficient. 
	Figure
	Figure 30 Example of AC stripping in control section 831-06 
	Figure 30 Example of AC stripping in control section 831-06 


	Group 3.  This group includes sections that were classified as structurally deficient based on the ZRI approach only. Investigation of core samples showed that only 18% of the sections in this group suffered from medium stripping in the AC layers; however, the majority of the sections were in good conditions as shown in Figure 31.  These results indicated that the ZRI approach did not successfully identify structurally deficient sections. 
	Figure
	Figure 31  Example of core sample in good structural conditions (Section 182-01) 
	Figure 31  Example of core sample in good structural conditions (Section 182-01) 


	Selection of the Most Promising Indicator 
	According to the ANOVA results, the ZRI was found to be significantly affected by pavement surface conditions.  In addition, the uniformity index analysis indicated that the ZRI was the indicator with the lowest uniformity (62%).  Furthermore, investigation of the core samples showed that the ZRI did not successfully identify pavement structural deficiency in some of the sections.  Therefore, the ZRI was not considered in the rest of the analysis. 
	Investigation of the core samples indicated that the RI and the SN were the most promising indicators to detect pavement structural deficiency; yet, sections considered deficient according to the SN thresholds were found to be the same sections as those considered deficient according to the RI thresholds.  Therefore, either one of these two indicators would be acceptable.  Since the in-service SN is a key input in the AASHTO 1993 overlay design approach, it was considered as the most promising indicator, an
	Propose Modifications to the SN Model  
	The SN model showed an acceptable accuracy in identifying pavement structural deficiency; however, the main shortcoming of the model is that it predicts the SN at 1.5-mile intervals.  Obtaining an average SN value every 1.5-mile prevented identifying structurally deficient locations in shorter pavement segments.  Additionally, the model was found to over-estimate SN in thin sections.  The main objective of this task was to develop an improved statistical model to predict pavement SN every 0.1 mile based on 
	Model Development 
	A new model was developed based on RWD and FWD measurements obtained from 12 different road segments distributed equally on the predefined three thickness categories, Table 14 (thick, medium, and thin).  The AC layer(s) thickness and the Annual Average Daily Traffic (AADT) were found to have significant effects on the pavement SN with P-values of 0.0039 and less than 0.0001, respectively. Therefore, both factors were included in the new model.  It is noted that the total pavement thickness was considered in
	0.04695 SN= -* -2.426* ln SD+0.29* ln ADTPLN  (26)
	StyleSpan
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	where, 
	th = Asphalt concrete layer(s) thickness of the pavement structure (in.);  = Avg. RWD deflection measured each 0.1 mile (mils.); SD = Standard deviation of the RWD deflection each 0.1 mile (mils.); ADTPLN= Average Annual Daily Traffic per lane (Vehicle/day); and RWD0.1 = Structural Number based on RWD measurements for 0.1 mile interval.   
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	Figure 32 presents the fitting of the model during the development phase.  As previously noted, the main advantage of the modified model is that it allows the estimation of the RWD0.1). The RWD0.1 was validated based on 25 road sections, which were not used in the development phase with a total length of 45.5 miles.  As shown in Figure 33, the modified model demonstrated a reasonable accuracy with a Root Mean Square Error (RMSE) of 0.8 and a coefficient of determination (R) of 0.76 in the validation phase. 
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	Figure 32 RWD0.1 model development 
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	RWD0.1 model validation 
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	Figure 34 RWD0.1 vs. SNFWD longitudinal profile 
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	Sensitivity Analysis 
	the various input parameters was evaluated.  In this RWD0.1 was calculated.  The average value for each parameter in the model was used as a baseline, and each parameter was varied between the minimum and maximum values as shown in Table 23. 
	The sensitivity of the modified model to
	analysis, each of the input parameters was varied, and the change in the predicted SN
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	Table 23 Sensitivity analysis of SN model to variation in input values 
	Table 23 Sensitivity analysis of SN model to variation in input values 
	Table 23 Sensitivity analysis of SN model to variation in input values 

	Parameter
	Parameter
	 ACth (in.) 
	D0 (mils) 
	SD (mils) 
	ADT veh/day 

	Baseline 
	Baseline 
	5.6 
	16.5 
	65 
	970 

	Max. value 
	Max. value 
	2.0 
	50 
	20 
	5050 

	Min. value 
	Min. value 
	12.0 
	1 
	140 
	50 


	Figure 35 presents the change in SN associated with a change in the different input parameters from the minimum to the maximum values.  Results of the sensitivity analysis RWD0.1 was the most sensitive to D (RWD Deflection) and the deflection standard deviation (SD), and was the least sensitive to traffic daily volume (ADT) and AC th). 
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	Figure 35 RWD0.1 model 
	Sensitivity analysis for the SN

	Model Efficiency and Characteristics 
	While the accuracy of the model has been demonstrated through the previous analysis, it was unclear whether the model is able to identify structurally deficient pavements as opposed to functionally deficient pavements, which could already be identified using conventional functional indices in the State PMS.  In this part of the study, the model’s ability to identify structurally-deficient pavements was investigated.  Surveyed road sections were used to RWD0.1 model in identifying structurally deficient pave
	study the efficiency of the SN

	Road sections were divided into six categories according to the AC layer(s) thickness and to the type of base layer (treated or untreated).  The treated category mostly included sections that were cement-treated as this technique is widely used to address poor soil conditions in the State. Road segments were also classified into three categories based on the Pavement Condition Index (PCI). Road sections with an average PCI less than 65 were considered in the poor category; the fair category included road se
	RWD0.1 was calculated for each 0.1-mile interval for the 153 road sections; the average value along the section was then calculated for RWD0.1 for each road category was calculated to study its RWD0.1 for RWD0.1 for sections in the “Fair” category. Similarly, sections in the “Good” category commonly had RWD0.1 average values higher than those in the “Fair” and the “Poor” categories; however, this was not applicable to all road segments indicating that the trend between structurally-deficient and functionall
	Variation with ALCR and PCI
	. The SN
	each road segment.  The average SN
	variation from one road category to another.  Figure 36 shows that the average SN
	the sections in the “Poor” category was not consistently lower than the average SN
	SN
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	Figure 36 RWD0.1 values for each PCI category
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	RWD0.1 values for each ALCR category
	Average SN
	1 

	No medium-treated, thick-untreated, and thick-treated sections in the poor category and no thick-treated sections in the fair category. 
	1 

	ANOVA. An Analysis of Variance was conducted on the aforementioned road categories to assess the effect of each of the pavement performance indicators (RNDM, RWD0.1. As shown in Table 24, the ANOVA RWD0.1 had significant correlation with the PCI, while in the other three categories, it was not correlated to the PCI.  RWD0.1 would allow for the identification of additional road segments that are in need of repair and/or maintenance and that are not currently identified by the functional indices.  This assump
	ALCR, PTCH, RUFF, RUT, and PCI) on the SN
	analysis indicated that in three out of the six categories, the SN
	Therefore, one may assume that considering a structurally-based index such as SN

	Table 24 RWD01 results of the ANOVA analysis 
	Table 24 RWD01 results of the ANOVA analysis 
	Table 24 RWD01 results of the ANOVA analysis 
	SN


	Category Indices 
	Category Indices 
	No of points 
	Pr > |t| 

	RNDM
	RNDM
	 ALCR 
	PTCH 
	RUFF 
	RUT 
	PCI 

	Thin (untreated) 
	Thin (untreated) 
	2640 
	0.7272 
	0.0454 
	0.0673 
	0.0749 
	0.0289 
	0.0318 

	Thin (treated) 
	Thin (treated) 
	1860 
	0.5913 
	0.5603 
	0.0557 
	0.3088 
	0.5214 
	0.1172 

	Medium (untreated) 
	Medium (untreated) 
	3750 
	0.4504 
	0.9082 
	0.7949 
	0.2556 
	0.3758 
	0.5168 

	Medium (treated) 
	Medium (treated) 
	3750 
	0.1964 
	0.0660 
	0.0084 
	0.0057 
	0.0563 
	0.0131 

	Thick (untreated) 
	Thick (untreated) 
	3490 
	0.0151 
	0.3883 
	0.0254 
	0.0050 
	0.0253 
	0.0349 

	Thick (treated) 
	Thick (treated) 
	1710 
	0.2001 
	0.6144 
	0.2955 
	0.4027 
	0.1841 
	0.2489 


	RWD0.1 Thresholds 
	Define SN

	In order to identify structurally deficient sections for different pavement layers’ thicknesses, the original (design) SN was calculated for each road segment using equation (27).  Road segments that exhibited a drop of 50% or more from the design SN were considered structurally-deficient and were selected for more detailed analysis. 
	*D+a*m*D+ a*m*D(27) 
	SN= a
	1
	1
	2
	2
	2
	3
	3
	3 

	where, 
	1, a, and a = structural layer coefficients for the asphalt layer, base layer, and subbase layer, respectively as defined by the design office in DOTD; 
	a
	2
	3

	, D, and D = layer thicknesses (in.) for the asphalt layer, the base layer, and the subbase layer, respectively; and 
	D
	1
	2
	3

	2 and m = drainage coefficients for the base layer and the subbase layer, respectively. 
	m
	3

	 value was set to be 0.42, the a values were set to be 0.14 for treated base and 0.07 for  values were set to be 0.11 for cement-treated subbase, and 0.04 for untreated subbase. These values are consistent with DOTD pavement design procedure.  The  and m coefficients were considered to be equal to 1.0 in all cases. 
	The a
	1
	2
	untreated base. The a
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	Analysis of Structurally Deficient Sections 
	Twenty-three sections were observed to have a drop of 50% or more from the design SN RWD0.1 ≤ 50 % of the design SN) and were selected for a comprehensive core examination.  In the following, one road segment from each category of the predefined six categories is presented; a summarized analysis is then presented for all road sections. 
	(i.e., SN

	Control Section 333-01 (LA 582). This road section is located in West Carroll Parish and was constructed in 1982; it has an AADT of 450.  The section had a length of 5.8 miles and the pavement structure consisted of four AC layers with a total thickness of 7 in. and a 12 in. treated sandy clay base layer on top of a clay subgrade.  A chip seal maintenance was conducted in 2005. At the location of the core, the PCI was 87 and the average PCI along the RWD0.1 was 1.64 and the average SNRWD0.1 along the sectio
	section was 91.4. At the location of the core, SN

	Control Section 818-08 (LA 881). This road section is located in East Carroll Parish and was constructed in 1981 with an AADT of 340.  The section had a length of 5.7 miles, and the pavement structure consisted of 6.75 in. AC layer and 11 in. crushed gravel with sand base layer on top of a clay subgrade. Two cores were extracted at two different locations.  At RWD0.1 was 1.9, and at the second location, the RWD0.1 was 1.8. The average PCI for the entire section was 61.4 and RWD0.1 was 1.88.  Given a reducti
	the first location, the PCI was 68 and the SN
	PCI was 74.5 and the SN
	the average SN

	Control Section 834-12 (LA 134). This road section is located in Morehouse Parish and has an AADT of 400.  The section had a length of 9.6 miles and the pavement structure consisted of 5 in. of AC and a 12 in. treated granular base layer on top of a clay subgrade.  A chip-seal was applied in 2007 and was the last treatment applied on the section.  At the location of the core, the PCI was 94 and the average PCI along the section was 91.6.  At the RWD0.1 was 1.1 and the average SNRWD0.1 along the section was 
	location of the core, SN

	Control Section 164-02 (LA 577). This road section is located in Madison Parish and was constructed in 1985 with an AADT of 290.  The section had a length of 15.6 miles and the pavement structure consisted of two AC layers with a total thickness of 5 in. and a 14 in. treated granular base layer on top of a clay subgrade.  An overlay was applied in 2002. At the location of the core, the PCI was 72 and the average PCI along the section was 71.  At the RWD0.1 was 1.84 and the average SNRWD0.1 along the section
	location of the core, the SN

	1.86. Given a reduction of 53% in structural capacity, this section was considered to be structurally-deficient. Upon examination of the core, severe stripping in the AC layer and failure in the base layer were detected; see Figure 38(d).  While this section was categorized by the PCI as in a fair condition, this road is structurally-deficient as identified by the SN calculated from RWD. 
	Control Section 831-04 (LA 822). This road section is located in Lincoln Parish and was constructed in 1959 with an AADT of 144. The section had a length of 6.6 miles and the pavement structure consisted of two AC layers with a total thickness of 2 in. and a 14 in. granular base layer on top of a sand subgrade. At the location of the core, the PCI was 51 RWD0.1 was 
	and the average PCI along the section was 60.  At the location of the core, the SN

	0.63RWD0.1 along the section was also 0.63.  Given a reduction of 78% in structural capacity, this section was considered to be structurally-deficient.  Upon examination of the core, stripping in the AC layer was detected, see Figure 38(e).  This road is structurally and functionally-deficient as identified by the SN calculated from RWD and the PCI. 
	 and the average SN

	Control Section 308-04 (LA 507). This road section is located in Lincoln Parish and with an AADT of 1,200.  The section had a length of 7.8 mi. and the pavement structure consisted of 3 in. AC and a 9 in. treated granular base layer on top of a sandy clay subgrade.  A chip seal was applied in 2006. At the location of the core, the PCI was 89 and the average RWD0.1 was 1.55 and the average RWD0.1 along the section was 1.56. Given a reduction of 63% in structural capacity, this section was considered to be st
	PCI along the section was 77. At the location of the core, SN
	SN

	Figure
	(a)
	(a)
	(a)
	 Route LA 582 

	(b)
	(b)
	 Route LA 881 


	Figure
	Figure
	(c) Route LA 134 
	(d) Route LA 577 
	Figure
	(e)
	(e)
	(e)
	 Route LA 822 

	(f)
	(f)
	 Route LA 507 


	Figure
	Figure 38 Cores samples and its locations for structural deficient sections 
	Summary of the Core Analysis 
	A total of 23 road sections were found to have more than 50% loss in structural capacity.  As shown in Figure 39(a), AC stripping was the most common distress in the sections with a RWD0.1 ≤ 50% of the design SN).  As shown in Figure 39(b), only 26% of those sections were in the “Poor” category according to the PCI indicating that considering a structural-based index would allow identifying these sections as structurally-deficient.  Currently, structurally-deficient sections that are classified in the “Fair
	noticeable drop in SN (SN

	Figure
	(a) (b) 
	Figure 39 
	(a) Cores observations summary (b) distribution according to PCI 
	Develop a Structural Index Based on Backcalculated Moduli 
	The objective of this task was to develop a structural condition index, known as the Structural Health Index (SHI), on a scale from zero to 100 that describes the structural integrity of in-service pavements based on the backcalculated layer moduli as predicted from FWD testing.  To achieve this objective, FWD-collected data were used in a backcalculation process; the backcalculation software, ELMOD 6, was used based on the deflection basin method.  The backcalculated moduli were then correlated and categor
	FWD Testing 
	Fifty-two in-service pavement sections with a total length of approximately 320 mi. located in District 05 of Louisiana were tested [18].  Nondestructive FWD deflection testing was conducted to measure the structural capacity of in-service pavements and to backcalculate the elastic moduli of the pavement layers and subgrade.  Deflection testing was performed in 
	Fifty-two in-service pavement sections with a total length of approximately 320 mi. located in District 05 of Louisiana were tested [18].  Nondestructive FWD deflection testing was conducted to measure the structural capacity of in-service pavements and to backcalculate the elastic moduli of the pavement layers and subgrade.  Deflection testing was performed in 
	accordance with ASTM D 4694, “Standard Test Method for Deflections with a Falling Weight-Type Impulse Load Device” and D 4695, “Standard Guide for General Deflection Measurements.” The FWD device was configured to have 9-sensor-array with sensors spaced at 0, 8.0, 12.0, 18.0, 24.0, 36.0, 48.0, 60.0, and 72.0 in. from the center of the load plate [35]. FWD testing was conducted at an interval of 0.1 mi. in the right wheel path and was not conducted on top of the cracked areas resulting in 1,107 test location

	Backcalculation Analysis 
	The first step toward developing a pavement structural index was to conduct the backcalculation analysis using FWD data collected on the aforementioned test sections.  The Dynatest software ELMOD 6 was used in this study to perform the backcalculation analysis.  The ELMOD 6 program provides three methods to conduct the backcalculation of layer moduli (radius of curvature, deflection basin fit, and finite element based method).  For this study, the deflection basin method was used in the backcalculation anal
	Fifty-two in-service road sections were analyzed to backcalculate the layer moduli.  Road segments were divided into two categories: (1) untreated base sections, representing sections with regular granular base layer or with no base; and (2) sections with cement-treated base layer [38].  The results of the backcalculated layer moduli for a sample of the road segments are presented in Figures 40 and 41. As shown in Figure 40, there were five road sections that were constructed with the asphalt layer directly
	1000 
	10 
	1 
	100 10 1 
	831-07 
	100Layer Moduli ksi 
	Control Section ID E1 (HMA) 
	E2 ( Base) 
	E3 (subgrade) 
	Figure 41 Backcalculated layer moduli for sections with cement-treated base layer 
	Loss in Structural Capacity 
	After conducting the backcalculation analysis, the next step in the development of the structural index was to determine the effects of layer moduli on the structural capacity of the pavement.  Change in SN is an indicator of the change in the pavement structural capacity.  
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	Figure 40 Backcalculated layer moduli for sections with untreated base layer
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	The loss of structural capacity was quantified as the difference between the pavement SN at the time of construction and at the time of FWD testing.  To calculate the pavement SN at the time of construction, equation (27) was used. 
	The same equation was used to determine the SN of the pavement at the time of FWD testing; however, due to pavement deterioration from both traffic and environmental loading,  and a would be less than the original typical design values.  The following 1 and a from the backcalculated layer moduli based on the AASHTO 1986 design guide [39, 40]: 
	the values of a
	1
	2
	equations were used to estimate the values of a
	2

	= a+ b* log (E) + c*(log (E)) (28) 
	a
	1
	1
	1
	 2

	where,  = AC backcalculated layer modulus (ksi). 
	a = -9.904, b= 2.958, c= -0.224, and E
	1

	=0.249 log (E)-0.977 (29) 
	a
	2
	2

	where, = base layer backcalculated modulus (ksi). 
	E
	2

	Formulation of the Structural Health Index (SHI) 
	The Structural Health Index (SHI) was defined based on the loss in SN such that it was scaled logistically from zero to 100.  A sigmodal function was selected to represent the correlation between the loss in SN % and the SHI as presented in equation (30).  Constant parameters in the function were optimized such that sections with a loss in SN ≥ 50 % would have SHI values near zero, and sections with minimal or no loss in SN would have SHI values near 100 [38]. 
	SHI=  (30)
	100

	1+e
	1+e
	0.15 (SN loss %-30) 

	Based on equation (30), the correlation between the SHI and the loss in SN% for the 52 road sections is presented in Figure 42. 
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	Figure 42 Relation between loss in structural number and the SHI 
	Evaluation and Validation of the Structural Health Index 
	After developing the SHI, a comprehensive evaluation of the extracted cores was conducted.  The road sections were classified into two categories according to the core conditions.  Sections with core samples with no visible asphalt stripping or material deterioration were categorized as “Good.” Sections with asphalt stripping and/or material deterioration were categorized as “Poor.” For the 52 road sections, 25 cores were found to be under the “Poor” category and the remaining 27 were classified under the “
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	(a) Control Section 834-07 
	Figure
	Figure 43 Stripped core samples from low SHI sections 
	Figure 43 Stripped core samples from low SHI sections 


	(b) Control Section 163-01 
	Figure
	(a) Control Section 155-01 
	Figure
	Figure 44 Sections with high SHI core samples 
	Figure 44 Sections with high SHI core samples 


	(b) Control Section 319-01 
	Figure 45 presents the percentage of “Poor” and “Good” sections for the different ranges of SHI. As shown in this figure, for section with SHI values greater than 70, 100% of the sections were in good conditions.  In contrast, for sections with SHI values less than 20, 100% of the sections were in poor conditions.  These trends support the successful description of pavement structural conditions through the SHI. 
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	Figure 45 Relation between SHI and pavement structural condition [38] 
	Comparison between SHI and the Pavement Condition Index (PCI) 
	To ensure that the use of SHI effectively contributes to the current decision matrix used in Louisiana and adds values to the functional indices currently used by the state, a statistical t-test analysis was conducted between SHI and PCI.  Results of the t-test showed that there is a significant difference between the PCI and the SHI with a P-value less than 0.001.  Further, the Pearson correlation index between PCI and SHI was equal to 0.41, which indicates a poor correlation between the two indices.  Thes
	Compare Rates of Deteriorations for Pavement Sections  
	Pavements in poor structural conditions are expected to have a faster rate of deterioration than pavements in good structural conditions [8].  In this task, the research team analyzed PMS data collected in District 05 from 2005 to 2013 to determine the rate of structural and functional deteriorations for pavements that are structurally-deficient and those that are structurally-sound. Based on this analysis, the research team assessed whether the rates of deterioration are significantly different for pavemen
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	Functional Class 
	As traffic volume is the main factor that affects the rate of pavement deterioration, sections were classified according to their functional class.  As shown in Table 25, rural major collectors, rural minor arterials, and urban minor arterials had the highest traffic volumes in the available data set. It is noted from Table 25 that only 6.9 miles of urban collectors were tested, which provided insufficient amount of data for further analysis of this functional class. Calculations were performed in this anal
	Table 25 Functional class distribution 
	Table 25 Functional class distribution 
	Table 25 Functional class distribution 

	Functional Class 
	Functional Class 
	Total (Length miles) 
	Average AADT (Vehicle /day) 

	Rural Major Collector 
	Rural Major Collector 
	449.2 
	1,800 

	Rural Minor Collector 
	Rural Minor Collector 
	321.5 
	898 

	Rural Local 
	Rural Local 
	152.2 
	598 

	Rural Minor Arterial 
	Rural Minor Arterial 
	71.2 
	4,800 

	Urban Minor Arterial 
	Urban Minor Arterial 
	56.3 
	6,400 

	Urban Collector 
	Urban Collector 
	6.9 
	3000 


	Segments that received treatment during the monitoring period were removed from the analysis to avoid misleading results.  Two procedures were followed in the elimination process. First, any segment that had a maintenance project recorded in the PMS database between 2005 and 2013 was removed.  Second, any segment that showed an increase in one or more of the performance indices values during the analysis period was eliminated.  For example, if a road had an ALCR value of 80 in year 2005 and an ALCR value of
	Structural Condition Index (SCI) 
	To describe in-service pavement structural conditions, a new parameter termed the Structural Condition Index (SCI), was introduced.  The SCI is calculated as the ratio between the in-RWD0.1) and the AASHTO SN required for a design life of 10 req10) as follows: 
	service structural number (SN
	years (SN
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	The AASHTO 1993 design equation was used to calculate required SN for a design period of req10) as shown below: 
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	where, 18 = equivalent single axle load for the design period (ESALS); R = Standard normal deviation for selected reliability; =Standard deviation; ∆PSI= Design Serviceability loss; R=Resilient Modulus of Subgrade (psi); and SN= AASHTO structural number. 
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	R =-1.282),  was considered 0.49. The subgrade modulus values were determined from DOTD parish resilient modulus map.  Traffic ESALs were obtained from the Highway Needs File. 
	According to DOTD office of design, the reliability level was considered 90% (Z
	∆PSI was considered 1.7, and the S
	0

	Define SCI Intervals 
	The SCI was calculated for each 0.1 mile-segment of the road sections; it was noticed to follow a normally-distributed function around a mean of 1.4 as shown in Figure 46.  Based on the trends observed in this figure, initial SCI intervals were defined and are provided in Table 26. 
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	Figure 46 SCI histogram distribution 
	Figure 46 SCI histogram distribution 


	SCI Intervals 
	Table 26 Initial SCI intervals 
	Table 26 Initial SCI intervals 
	Table 26 Initial SCI intervals 

	SCI Range 
	SCI Range 
	Structural Capacity 

	SCI<0.6 
	SCI<0.6 
	Very low 

	1>SCI≥0.6 
	1>SCI≥0.6 
	Low 

	1.5>SCI≥1 
	1.5>SCI≥1 
	Low to Medium 

	2>SCI≥1.5 
	2>SCI≥1.5 
	Medium 

	SCI≥2 
	SCI≥2 
	high 


	Compare Structural Deterioration Rates 
	For each SCI interval, PMS data were collected for the collection cycles from 2005 to 2013.  However, the number of sections that did not receive treatment for that relatively long period of time were found to be too small to definitively assess the deterioration trends.  Hence, the criterion was changed to include all sections that did not received treatment from 2009 to 2013 such that all pavement sections selected had three data points.  Figures 47 to 54 present the deterioration trends of the performanc
	As shown in Tables 27 and 28, there is a correlation between the SCI category and the rate of deterioration. For example, sections in the very low and the low categories are deteriorating faster than sections in the high and the medium categories.  It is worth noting that the rates of deterioration were independent of the initial values of the performance indices for the collectors, except for roughness. However, for the arterials, the rate of deterioration was affected by both the SCI value and the initial
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	Figure 47 Alligator cracking deterioration for major collectors 
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	Figure 48 Rutting deterioration for major collectors 
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	Figure 49 Random cracking deterioration for major collectors 
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	Figure 50 Roughness deterioration for major collectors 
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	Figure 51 Alligator cracking deterioration for arterials 
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	Figure 52 Rutting deterioration for arterials 
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	Figure 53 Random cracking deterioration for arterials 
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	Figure 54 Roughness deterioration for arterials 
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	Table 27 Linear fitting of deterioration rates for major collectors 
	Table 27 Linear fitting of deterioration rates for major collectors 
	Table 27 Linear fitting of deterioration rates for major collectors 

	Rank
	Rank
	 ALCR Equation 
	RUT Equation 
	RNDM Equation 
	RUFF Equation 

	Very low 
	Very low 
	y = -4.25x + 8636 
	y = -4.75x + 9632 
	y = -5.70x + 11556 
	y = -2.50x + 5093 

	Low 
	Low 
	y = -2.79x + 5707 
	y = -1.40x + 2907 
	y = -3.63x + 7395 
	y = -3.00x + 6103 

	Low - med. 
	Low - med. 
	y = -2.37x + 4855 
	y = -1.01x + 2140 
	y = -2.35x + 4812 
	y = -1.50x + 3106 

	Medium 
	Medium 
	y = -0.25x + 602 
	y = -0.73x + 1569 
	y = -0.48x + 1063 
	y = -1.25x + 2605 

	High 
	High 
	y = -0.25x + 602 
	y = -0.40x + 903 
	y = -0.48x + 1071 
	y = -1.00x + 2106 


	Table 28 Linear fitting of deterioration rates for arterials 
	Rank
	Rank
	Rank
	 ALCR Equation 
	RUT Equation 
	RNDM Equation 
	RUFF Equation 

	Very low 
	Very low 
	y = -3.25x + 6598 
	y = -3.50x + 7113 
	y = -2.00x + 4088 
	y = -2.75x + 5607 

	Low 
	Low 
	y = -2.50x + 5093 
	y = -3.50x + 7116 
	y = -1.75x + 3590 
	y = -3.25x + 6610 

	Low - med. 
	Low - med. 
	y = -1.75x + 3601 
	y = -1.75x + 3602 
	y = -1.00x + 2095 
	y = -0.75x + 1592 

	Medium 
	Medium 
	y = -1.50x + 3110 
	y = -3.00x + 6617 
	y = -0.25x + 600 
	y = -1.00x + 2100 

	High 
	High 
	y = -1.25x + 2610 
	y = -2.25x + 4616 
	y = -0.25x + 1104 
	y = -0.50x + 1099 


	Overlay Design for Selected Pavement Sections 
	In this task, an overlay design was conducted for all sections that were included in the RWD testing program.  Results of this analysis were used to assess the cost-efficiency of the RWD and to develop a methodology to incorporate structural capacity information into the PMS. Two approaches of overlay design were used, and their results were compared.  First, the current approach adopted by the DOTD office of design, which does not incorporate structural capacity indicators based on NDT measurements.  Secon
	Current Overlay Design Procedure  
	According to the DOTD office of design, the current overlay design procedure is presented.  First, if the PMS maintenance decision for a road segment is “thin overlay,” the overlay is considered as a functional overlay with a thickness of 2 in., and no design is required.  Second, if the PMS decision is “medium overlay” or “structural overlay,” the overlay thickness is estimated from the following equation: 
	Overlay thickness   (33) 
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	where, 
	req = required structural number for a design life of 10 years; 
	SN

	eff = effective structural number assuming 50% loss in structural capacity and 2 in. milling, as shown in equation (34); and  
	SN

	= asphalt layer structural coefficient (assumed 0.44). 
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	The aforementioned assumption of 50% loss in structural capacity may lead to two types of error as shown in Figure 55. First, if the actual loss in structural capacity is less than 50%, the designed overlay using current design practice would be overestimated (Type І error).  Second, if the actual loss in structural capacity is more than 50%, the designed overlay using the current practice would be underestimated (Type II error).  Both types of error will lead to loss of funds. The proposed design approach 
	P
	Figure

	Figure 55 Type of errors in the current design procedure 
	Figure 55 Type of errors in the current design procedure 
	Improved Overlay Design Procedure  

	The research team developed a procedure to incorporate RWD measurements in the overlay design. Such a procedure would allow taking into consideration in-service pavement structural conditions instead of assuming 50% loss in structural capacity.  Furthermore, in the proposed procedure, road segments with PMS decisions of “thin overlay,” “medium overlay,” and “structural overlay” are all considered for overlay design.  Figure 56 shows a comparison between the two overlay design procedures.  Equation (32) is u
	SN
	used to estimate the effective structural number, which is termed SN

	Figure
	Figure 56 Current and proposed overlay design procedures 
	Figure 56 Current and proposed overlay design procedures 


	According to LTRC study FHWA/LA.08/454 conducted by Wu and Gaspard, the SN FWD) needs to be calibrated for Louisiana’s conditions when used for overlay design purposes [41, 42]. The researchers developed a eff from the SNFWD as shown in equation (35). Since the model RWD0.1 was developed and validated based on SNFWD, SNRWD was subjected to the same calibration procedure as shown in equation (36):   
	calculated from FWD measurements (SN
	model to estimate the SN
	proposed for SN

	81 
	eff = 2.58 ln (SNFWD) -0.77 (35) 
	SN

	RWDeff= 2.58 ln (SNRWD0.1) -0.77 (36) 
	SN

	Comparing Results of Both Procedures
	Overlay design was conducted for all road segments tested with RWD and with PMS decisions of thin, medium, or thick overlay using the current DOTD and the proposed design procedures. It is noted that a minimum overlay thickness of 2 in. was assigned for the aforementioned road segments.  Findings of this analysis are shown in Figure 57; current design practice generally resulted in thicker overlay thicknesses (conservative design) especially in the urban principal arterial category.  Comparison of the two d
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	Figure
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	Figure 57Average overlay thicknesses using current and proposed design procedures 
	Validation of the proposed approach  
	The objective of this analysis was to check the reliability and the effectiveness of the proposed overlay design approach. Sections with noteworthy differences in the overlay thickness designed using the proposed approach in comparison to the current approach and 
	that had available backcalculated layer moduli were considered for further analysis.  A multilayer elastic software (KenPave) was used to calculate the critical pavement responses (tensile strain at the bottom of the AC layer and vertical strain on top of the subgrade) for the two design approaches, i.e., current and proposed overlay design procedures.  Pavement responses were calculated for a load application of 9,000 lbs. on a dual tire assembly with a radius of 5.9 in. The numbers of cycles for fatigue a
	-

	d and Nf) calculated from equations (9) and (10) was compared to the actual traffic (ESALs) to determine the design life. Table 29 presents the results of the analysis. As shown in Table 29, the modified design procedure was more precise in satisfying the required 10-year design life for the different pavement sections. 
	The number of cycles for fatigue failure and subgrade rutting failure (N

	Table 29 Comparison between overlay design procedures using a mechanistic-empirical approach 
	Table 29 Comparison between overlay design procedures using a mechanistic-empirical approach 
	Table 29 Comparison between overlay design procedures using a mechanistic-empirical approach 

	Section# 
	Section# 
	Current overlay design procedure 
	Proposed overlay design procedure 

	Overlay thickness 
	Overlay thickness 
	ɛt 
	ɛc 
	Design life (years) 
	Overlay thickness 
	ɛt 
	ɛc 
	Design life (years) 

	837-15 
	837-15 
	4.0 
	6.6E-6 
	1.7E-4 
	16 
	2.0 
	4.8E-6 
	2.1E-6 
	12 

	831-07 
	831-07 
	4.5 
	2.2E-4 
	2.5E-4 
	14 
	2.5 
	3.1E-4 
	3.5E-4 
	10 

	167-04 
	167-04 
	4.5 
	2.7E-4 
	1.1E-3 
	4 
	7.5 
	8.4E-5 
	7.6E-4 
	13 

	68-02 
	68-02 
	4.0 
	3.3E-5 
	7.2E-4 
	7 
	5.0 
	2.3E-5 
	6.1E-4 
	12 


	Figure 58 presents the correlations between pavement SN calculated based on FWD RWD0.1 and the 50% loss of the original structural capacity RWD0.1 correlates much better with the SN calculated based on FWD than the 50% loss of SN assumption. 
	measurements and both the SN
	assumption.  It is clear from these results that SN
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	RWD0.1 and 50% structural capacity loss assumption to SNFWD 
	Comparison of SN

	 
	Investigate the Feasibility of Determining the Subgrade Modulus from RWD Data 
	 In this task, the development of a model that utilizes RWD deflection measurements to predict the subgrade resilient modulus for flexible pavements at the network-level is described.  For model development, RWD and FWD measurements obtained from the testing program conducted in Louisiana were used to train an ANN-based model.  After the learning process, the ANN model was validated using RWD and FWD data obtained from the testing program independently conducted at the MnROAD test facility in Minnesota. 
	 (60 in. from the center of the plate) measurements were used in equation (3) to calculate the subgrade resilient modulus  measurements as they are only affected by the subgrade properties [30.] Second, statistical correlations were investigated between RWD measurements and the subgrade resilient modulus calculated from Step 1.  The RWD measurements were corrected to a reference temperature of 20C using BELLS equation and the AASHTO 1993 procedure [18, 43]. Finally, the RWD measurements and the subgrade res
	To develop the proposed ANN model, the FWD sensor D
	7
	for the tested pavement sections, Step 1.  No temperature correction was applied for the D
	7
	o

	 
	Correlation between the RWD and the Subgrade Resilient Modulus

	As described earlier, the RWD reports the average deflections on 0.1-mile intervals along with the standard deviations.  Therefore, four readings can be obtained from the device; the ) and its standard deviation (σD0), and the average 
	As described earlier, the RWD reports the average deflections on 0.1-mile intervals along with the standard deviations.  Therefore, four readings can be obtained from the device; the ) and its standard deviation (σD0), and the average 
	average deflection at the rear axle (D
	0

	) and its standard deviation (σD1). The statistical correlations between these four parameters and the subgrade resilient modulus were investigated for the measurements obtained from the Louisiana testing program.   
	deflection at 18 in. (D
	1


	An analysis of variance (ANOVA) was conducted between the subgrade resilient modulus and the four RWD measurements using the SAS 9.4 software. Table 30 summarizes the , σD0, and D were D1 was not statistically correlated to the subgrade resilient modulus.  The coefficient of determination (R) between each parameter and the subgrade resilient modulus was also  and D with the Mr. As shown in Figure 59, there is a downward trend between the decrease in subgrade resilient modulus and the measured RWD deflection
	results of the statistical analyses.  As shown in this table, Parameters D
	0
	1
	found to be significantly correlated to the subgrade resilient modulus.  On the other hand, σ
	2
	calculated. Figure 59 presents the correlations between the D
	1
	0
	2

	, σD0, and D) were considered in the ANN model for prediction of the subgrade resilient modulus.  As previously noted, the ) at 15 in. instead of 18 in. To develop a model that is compatible with measurements of both prototypes, ; where, r is the radial distance from the RWD rear axle. A multi-linear regression model was developed using SAS 9.4 and resulted in an R of 0.6 and an RMSE of 15%; therefore, ANN was utilized in the present study to develop a model with better accuracy than the multi-linear regres
	Based on these findings, the three RWD measurements (D
	0
	1
	RWD prototype used in MnROAD measured the secondary deflection (D
	1
	“D1/r” was used in the model instead of D
	1
	2

	Table 30 Correlation between RWD measurements and the FWD subgrade resilient modulus  
	Parameter 
	Parameter 
	Parameter 
	P-Value 
	R2 

	D0
	D0
	 <0.0001 
	0.2950 

	σD0
	σD0
	 <0.0001 
	0.4023 

	D1
	D1
	 <0.0005 
	0.1933 

	σD1
	σD1
	 0.9087 
	0.1679 
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	Figure 59 1 and (b) D0 
	Correlation between the subgrade resilient modulus and (a) D

	ANN-Model Development 
	A multilayered feed-forward ANN using a back-propagation error algorithm was developed with a tan-sigmoid transfer function and a linear activation function.  The simplest network topology that produces acceptable prediction accuracy was selected to avoid overfitting of the model [31, 32]. The network topology consisted of three layers of neurons and two layers of weights; an input layer (i) of 3 neurons; a hidden layer (j) of 2 neurons; a target output layer (k) of 1 neuron, layer of weights between neuron
	A multilayered feed-forward ANN using a back-propagation error algorithm was developed with a tan-sigmoid transfer function and a linear activation function.  The simplest network topology that produces acceptable prediction accuracy was selected to avoid overfitting of the model [31, 32]. The network topology consisted of three layers of neurons and two layers of weights; an input layer (i) of 3 neurons; a hidden layer (j) of 2 neurons; a target output layer (k) of 1 neuron, layer of weights between neuron
	weights between neuron layers j and k (jk). Weights in layers ij and jk were named “W” and “W,” respectively. In addition, biases values were added to the sums calculated at each neuron (except layer i). Biases in layers j and k were named “b” and “B,” respectively [32]. To train the network, such that the proper weights and biases are calculated, the input layer , σD0, and D), and the target layer r). The network structure is shown in Figure 60. 
	’
	was fed with the three selected RWD measurements (D
	0
	1
	was fed with the subgrade resilient modulus values (M


	Figure 60 Structure of the ANN model 
	Data from the Louisiana testing program were utilized in the model development phase (124 road segments).  The data were divided into 70% for training, 15% for validation, and 15% for testing. To avoid overfitting and to increase the network generalization ability, training was halted when the validation set error stopped decreasing, as shown in Figure 61. Since the testing data set had no effect on the training phase, it was used to provide an independent measure of the network performance. 
	Figure
	Figure 61 ANN model performance 
	Figure 61 ANN model performance 


	Model Prediction  
	The regression plots of the ANN model for the training, validating, testing, and overall sets are shown in Figure 62. All data processing was performed off-line using a commercial software package (MATLAB R2013a, The MathWorks Inc.).  As shown in this figure, the model had acceptable prediction accuracy with an R of 0.73. In addition, the RMSE (%) was calculated at 12%.  The RMSE (%) was calculated as follows: 
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	Figure
	Figure 62 Regression plots of the developed ANN model for (a) the training data set, (b) the validation data set, (c) the testing data set, and (d) all data 
	Figure 62 Regression plots of the developed ANN model for (a) the training data set, (b) the validation data set, (c) the testing data set, and (d) all data 


	Network Description 
	At the end of the learning phase, proper weights were assigned to every connection, and proper biases were assigned to each neuron as follows: 
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	Forward Calculations 
	Artificial neural network models are considered by many researchers as "black-boxes" [4547].  With a complex network structure, it is difficult to explicitly describe the learned relationship between the input and the output variables. However, the simplicity of the model presented in this study (only one hidden layer with only 2 neurons) allows to describe the network in a form of a simple equation. The general equation of a backpropagation algorithm-based neural network with one hidden layer, one output v
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	where, k= the model output at layer k; j = number of neurons in the hidden layer; i = number of neurons in the input layer; i = the input variables; and The tansig function can be described as follows: 
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	A linear activation function was then utilized to transfer the output in layer k to the final r). The following expression describes the model developed utilizing ANN to predict the subgrade resilient modulus based on RWD measurements: 
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	Model Evaluation and Analysis 
	The limits of agreement (LoA) methodology, developed by Bland and Altman, is a simple and powerful methodology for assessing agreements between two devices or procedures [48].  The methodology was successful to the extent that the reference that introduced this method has become one of the most cited statistical papers [49]. Bland and Altman 
	The limits of agreement (LoA) methodology, developed by Bland and Altman, is a simple and powerful methodology for assessing agreements between two devices or procedures [48].  The methodology was successful to the extent that the reference that introduced this method has become one of the most cited statistical papers [49]. Bland and Altman 
	concluded that using only regular regression could be misleading when comparing two devices or methodologies for two reasons. First, correlation depends on the range and distribution of the variables.  Second, correlation ignores any systematic bias between the two variables [50]. A recent study concluded the usefulness of the LoA methodology for comparing TSD and the FWD measurements [51]. 
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	Figure 63 Bland and Altman Chart for the subgrade resilient modulus calculated based on FWD and RWD measurements 
	Figure 63 Bland and Altman Chart for the subgrade resilient modulus calculated based on FWD and RWD measurements 


	The procedure of the LoA methodology consists of the following steps: (1) plot a chart with the differences between measurements by two methods on the Y-axis, and the mean of the two measurements on the X-axis, (2) calculate the mean and the standard deviation (σ) of the differences, and (3) calculate the mean ± 1.96 σ. One would then expect 95% of differences between measurements by the two methods to lie within these limits.  Figure 63 shows the LoA between the subgrade resilient modulus values calculated
	r values calculated based on the FWD and the RWD measurements did not exceed the range of ± 3 ksi, which is reasonable especially at the network level.  The figure provides a better understanding of the model r based on RWD data. The figure also shows that the error in the r value. 
	As shown in Figure 63, 95% of the differences between the M
	accuracy in predicting M
	predicted subgrade resilient modulus is independent of the M

	Difference in Mr (ksi) 
	4 3 2 1 0 
	4 3 2 1 0 
	5 
	5 


	‐1 ‐2 ‐3 ‐4 
	Mean Mr (ksi) 
	Model Validation 
	The generalization ability of the presented ANN model was tested using measurements obtained from the testing program conducted at MnROAD.  RWD data from 16 flexible pavement testing cells were used as inputs in the ANN model to predict the subgrade resilient r predicted values were then compared with those calculated based on FWD measurements, see equation (24).  The model showed acceptable accuracy with an R of 0.72 and a RMSE of 8% as shown in Figure 64. 
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	Figure 64 Model validation using data from the MnROAD testing program  
	Cost Efficiency and Added Values of RWD Testing 
	Two approaches were developed to implement RWD measurements into the DOTD current practices. In the first approach, the SCI was converted to a scaled index from 0 to 100 and was added to the State PMS treatment selection matrix.  In the second approach, the RWD0.1 was added to the State overlay design procedure (see Figure 56).  Figure 65 presents the general layout of the two developed approaches.  Description of the two approaches is presented in the following sections. 
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	Figure 65 General layout of the proposed implementation approaches 
	Figure 65 General layout of the proposed implementation approaches 


	Approach 1: Modify the Treatment Selection Decision Matrix Procedure 
	In the first approach, the SCI was converted to a scaled index from 0 to 100, where a value of 100 indicates excellent structural condition, and was added to the state treatment selection matrix. The SCI was converted to a scale from 0 to 100 (SSCI) to follow the same scale adopted by the other PMS indices using a sigmodal function as presented in equation (41): 
	P
	SSCI   (41) where, 
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	SCI= Structural Condition Index; and 
	SSCI= Scaled Structural Condition Index. 
	Figure 66 shows the correlation between the SCI and the SSCI.  Modified treatment selection matrices were developed with the implementation of the SSCI and are presented in Tables 31 to 32. 
	0 10 20 30 40 50 60 70 80 90 100 SSCI 
	0 0.5 1 1.5 2 2.5 3 SCI 
	0 0.5 1 1.5 2 2.5 3 SCI 


	Figure 66 Correlation between the SCI and the SSCI 
	Table 31 Modified decision matrix for arterials  
	Table 31 Modified decision matrix for arterials  
	Table 31 Modified decision matrix for arterials  

	TR
	ALCR 
	RNDM 
	PTCH 
	RUT 
	RUFF 
	SSCI 

	Micro-surfacing 
	Micro-surfacing 
	≥95 
	≥95 
	≥95 
	≥65 – <80 
	≥80 
	≥95 

	Thin overlay (2in.) 
	Thin overlay (2in.) 
	≥90 
	≥80 – <95 
	≥80 
	<65 
	≥70 – <80 
	≥75 – <95 

	Medium overlay 
	Medium overlay 
	≥50 – <90 
	<80 
	≥60 – <80 
	----
	<70 
	≥60 – <75 

	Structural overlay 
	Structural overlay 
	<50 
	----
	<60 
	----
	----
	<60 


	Table 32 Modified decision matrix for collectors  
	Table 32 Modified decision matrix for collectors  
	Table 32 Modified decision matrix for collectors  

	TR
	ALCR 
	RNDM 
	PTCH 
	RUT 
	RUFF 
	SSCI 

	Polymers S. treat. 
	Polymers S. treat. 
	≥85 – <95 
	≥80 – <95 
	≥85 
	≥65 
	≥80 
	≥95 

	Microsurfacing 
	Microsurfacing 
	≥95 
	≥95 
	≥95 
	≥65 – <80 
	≥80 
	≥95 

	Thin overlay (2 in.) 
	Thin overlay (2 in.) 
	----
	----
	----
	----
	----
	≥75 – <95 

	Medium overlay 
	Medium overlay 
	≥60 – <85 
	<80 
	≥65– <85 
	<65 
	≥60 – <80 
	≥60 – <75 

	In-place stabilization  
	In-place stabilization  
	<60 
	----
	<65 
	----
	<60 
	<60 


	The impacts of the proposed modifications presented in Tables 31 and 32 were investigated.  The effects were analyzed using two levels of decisions: treatment selections are assigned to every 0.1 mile road segment and treatment selections are assigned to every control section, which assumes that only one treatment decision is assigned to every homogenous pavement section. Table 33 presents the effects of applying the modified decision matrix if decisions are made to every 0.1 mile road segment.  Similarly, 
	Table 33 Change in treatment selection by applying proposed modification to decision matrix 
	Table 33 Change in treatment selection by applying proposed modification to decision matrix 
	Table 33 Change in treatment selection by applying proposed modification to decision matrix 

	TR
	Modified Matrix Decision 

	Current Decision 
	Current Decision 
	DN 
	MS 
	PST 
	TO 
	MO 
	SO 
	IPS 
	Change 

	DN* 
	DN* 
	4195 
	0 
	0 
	512 
	132 
	0 
	206 
	16.8% 

	MS* 
	MS* 
	0 
	145 
	0 
	31 
	3 
	0 
	2 
	19.9% 

	PST* 
	PST* 
	0 
	0 
	491 
	159 
	49 
	0 
	90 
	37.8% 

	TO* 
	TO* 
	0 
	0 
	0 
	1529 
	159 
	0 
	384 
	26.2% 

	MO* 
	MO* 
	0 
	0 
	0 
	0 
	1751 
	8 
	578 
	25.1% 

	SO* 
	SO* 
	0 
	0 
	0 
	0 
	0 
	10 
	0 
	0.0% 

	IPS* 
	IPS* 
	0 
	0 
	0 
	0 
	0 
	0 
	1281 
	0.0 % 


	Where, DN*= Do Nothing, MS*= Microsurfacing, PST*= Polymer Surface Treatment, TO*= Thin Overlay, MO*= Medium Overlay, SO*= Structural Overlay, and IPS* = in place Stabilization 
	Table 34 Change in projected cost of treatments based on modified decision matrix 
	Decision 
	Decision 
	Decision 
	Number of sections 

	Current Practice 
	Current Practice 
	Modified Practice 

	DN 
	DN 
	39 
	30 

	MS 
	MS 
	0 
	0 

	PST 
	PST 
	0 
	0 

	TO 
	TO 
	2 
	7 

	MO 
	MO 
	91 
	83 

	SO 
	SO 
	0 
	3 

	IPS 
	IPS 
	12 
	21 

	Total Cost 
	Total Cost 
	$256,625,600 
	$279,741,800 


	Approach 2: Modify Treatment Selection and Overlay Design Procedure 
	RWD0.1 was added to the state overlay design procedure and SSCI was added to the State treatment selection matrix.  The main advantage RWD0.1 to estimate in-service pavement structural conditions instead of assuming a 50% loss in structural capacity as it is currently assumed.  Two enhanced decision trees were developed to implement the proposed changes to the overlay 
	RWD0.1 was added to the state overlay design procedure and SSCI was added to the State treatment selection matrix.  The main advantage RWD0.1 to estimate in-service pavement structural conditions instead of assuming a 50% loss in structural capacity as it is currently assumed.  Two enhanced decision trees were developed to implement the proposed changes to the overlay 
	In the second approach, the calculated SN
	of this approach is that it uses SN

	design procedure. The enhanced decision trees were developed for arterials and collectors and are shown in Figures 67 and 68. The decision trees were constructed based on the following assumptions: 

	 
	 
	 
	Sections in poor structural conditions should receive rehabilitation treatments that increase pavement structural capacity. 

	 
	 
	Sections in good structural conditions would receive the same (M&R) actions selected according to the current DOTD decision matrix, see Table 3. 

	 
	 
	RWD0.1 as described earlier. 
	Medium and structural overlays would be designed utilizing the SN


	 
	 
	Minimum overlay thickness was set at 50.8 mm (2 in.). 
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	Figure

	Figure 67 Enhanced decision tree for arterials 
	Figure
	Figure 68 Enhanced decision tree for collectors 
	Figure 68 Enhanced decision tree for collectors 


	To assess the cost-efficiency and added value of the second approach, the enhanced decision trees were applied to the road network in District 05, which was tested using RWD.  Comparisons were made between the PMS decisions using the current decision matrix, see Table 3, and the enhanced decision trees. Table 35 and 36 present the change in treatment selection of the current DOTD PMS practice and the proposed enhanced decision procedure for the functional classes of rural minor arterials and the rural major
	SN

	Table 35 Transition matrix for the current and the enhanced trees procedure for the rural minor arterials 
	Current decision/ New decision 
	Current decision/ New decision 
	Current decision/ New decision 
	DN*
	 MS* 
	TO*
	 MO* 
	SO* 
	Type I error % 
	Type II error % 
	Total error % 

	DN*
	DN*
	 260 
	0 
	68 
	0 
	0 
	0 
	20.7 
	20.7 

	MS* 
	MS* 
	0 
	3 
	6 
	0 
	0 
	0 
	66.7 
	66.7 

	TO* 
	TO* 
	0 
	0 
	72 
	0 
	1 
	0 
	1.4 
	1.4 

	MO* 
	MO* 
	0 
	0 
	196 
	66 
	39 
	65.1 
	13.0 
	78.1 

	SO* 
	SO* 
	0 
	0 
	0 
	0 
	1 
	0 
	0.0 
	0.0 


	Table 36 Transition matrix for the current and the enhanced trees procedure for the rural major collectors 
	Table 36 Transition matrix for the current and the enhanced trees procedure for the rural major collectors 
	Table 36 Transition matrix for the current and the enhanced trees procedure for the rural major collectors 

	Current decision/ New decision 
	Current decision/ New decision 
	DN* 
	PST*
	 MS* 
	MO* 
	TO* 
	IPS* 
	Type I error % 
	Type II error % 
	Total error % 

	DN* 
	DN* 
	1601 
	0 
	0 
	218 
	0 
	56 
	0.0 
	14.6 
	14.6 

	MS* 
	MS* 
	0 
	0 
	18 
	2 
	0 
	1 
	0.0 
	15.0 
	15.0 

	PST* 
	PST* 
	0 
	210 
	0 
	44 
	0 
	9 
	0.0 
	20.2 
	20.2 

	MO* 
	MO* 
	0 
	0 
	0 
	567 
	1265 
	142 
	64.1 
	7.2 
	71.3 

	IPS* 
	IPS* 
	0 
	0 
	0 
	0 
	0 
	359 
	0.0 
	0.0 
	0.0 


	The cost associated with each treatment is presented in Table 37 from PMS sources.   
	Table 37 Construction cost for each treatment strategy per mile 
	Table 37 Construction cost for each treatment strategy per mile 
	Table 37 Construction cost for each treatment strategy per mile 

	Treatment Type 
	Treatment Type 
	Construction cost/ mile 2 lanes (2014) 

	Microsurfacing 
	Microsurfacing 
	$67,000 

	Polymer Surface treatment  
	Polymer Surface treatment  
	$72,000 

	Thin Overlay 
	Thin Overlay 
	$184,000 

	Medium Overlay 
	Medium Overlay 
	$334,000 

	Structural Overlay 
	Structural Overlay 
	$360,000 

	In place Stabilization 
	In place Stabilization 
	$496,000 


	Tables 38 to 42 present the comparison between the current decision matrix and the enhanced decision trees for rural minor arterials, rural major collectors, urban minor arterials, rural minor collectors, and rural locals, at the segment level, while Table 43 presents the same comparison at the control section level.  To compare the difference in cost between the two decision-making processes, the cost of performing each treatment was obtained from the PMS database. Construction and RWD testing costs were c
	Table 38 Current and enhanced decision comparison for rural minor arterials  
	Table 38 Current and enhanced decision comparison for rural minor arterials  
	Table 38 Current and enhanced decision comparison for rural minor arterials  

	Current Decision 
	Current Decision 
	# Segments 
	Enhanced Decision 
	# Segments 

	Do Nothing 
	Do Nothing 
	328 
	Do Nothing 
	260 

	Microsurfacing 
	Microsurfacing 
	9 
	Microsurfacing 
	3 

	Thin Overlay 
	Thin Overlay 
	73 
	Thin Overlay 
	342 

	Medium Overlay 
	Medium Overlay 
	301 
	Medium Overlay 
	66 

	Structural Overlay 
	Structural Overlay 
	1 
	Structural Overlay 
	41 

	Total # segments 
	Total # segments 
	712 
	Total # segments 
	712 

	Treatment cost 
	Treatment cost 
	$11,492,900 
	Treatment cost 
	$9,998,025 

	RWD testing cost 
	RWD testing cost 
	$0.00 
	RWD testing cost 
	$4,725 


	Table 39 Current and enhanced decision comparison for rural major collectors  
	Current Decision 
	Current Decision 
	Current Decision 
	# Segments 
	Enhanced Decision 
	# Segments 

	Do Nothing 
	Do Nothing 
	1,875 
	Do Nothing 
	1601 

	Microsurfacing 
	Microsurfacing 
	21 
	Microsurfacing 
	18 

	Polymer Surface treatment  
	Polymer Surface treatment  
	268 
	Polymer Surface treatment  
	210 

	Thin Overlay 
	Thin Overlay 
	0 
	Thin Overlay 
	1,265 

	Medium Overlay 
	Medium Overlay 
	1969 
	Medium Overlay 
	831 

	In place Stabilization 
	In place Stabilization 
	359 
	In place Stabilization 
	567 

	Total # segments 
	Total # segments 
	4,492 
	Total # segments 
	4,492 

	Treatment cost 
	Treatment cost 
	$85,641,300 
	Treatment cost 
	$80,818,700 

	RWD testing cost 
	RWD testing cost 
	$0.00 
	RWD testing cost 
	$31,500 

	Table 40 Current and enhanced decision comparison for urban minor arterials  
	Table 40 Current and enhanced decision comparison for urban minor arterials  


	Current Decision 
	Current Decision 
	Current Decision 
	# Segments 
	Enhanced Decision 
	# Segments 

	Do Nothing 
	Do Nothing 
	260 
	Do Nothing 
	217 

	Microsurfacing 
	Microsurfacing 
	10 
	Microsurfacing 
	7 

	Thin Overlay 
	Thin Overlay 
	121 
	Thin Overlay 
	238 

	Medium Overlay 
	Medium Overlay 
	161 
	Medium Overlay 
	52 

	Structural Overlay 
	Structural Overlay 
	10 
	Structural Overlay 
	48 

	Total # segments 
	Total # segments 
	562 
	Total # segments 
	562 

	Treatment cost 
	Treatment cost 
	$8,030,800 
	Treatment cost 
	$7,897,500 

	RWD testing cost 
	RWD testing cost 
	$0.00 
	RWD testing cost 
	$6,600 


	Table 41 Current and enhanced decision comparison for rural locals 
	Table 41 Current and enhanced decision comparison for rural locals 
	Table 41 Current and enhanced decision comparison for rural locals 

	Current Decision 
	Current Decision 
	# Segments 
	Enhanced Decision 
	# Segments 

	Do Nothing 
	Do Nothing 
	239 
	Do Nothing 
	163 

	Microsurfacing 
	Microsurfacing 
	3 
	Microsurfacing 
	3 

	Polymer Surface treatment  
	Polymer Surface treatment  
	79 
	Polymer Surface treatment  
	24 

	Thin Overlay 
	Thin Overlay 
	0 
	Thin Overlay 
	172 

	Medium Overlay 
	Medium Overlay 
	591 
	Medium Overlay 
	286 

	In place Stabilization 
	In place Stabilization 
	610 
	In place Stabilization 
	874 

	Total # segments 
	Total # segments 
	1,522 
	Total # segments 
	1,522 

	Treatment cost 
	Treatment cost 
	$50,584,300 
	Treatment cost` 
	$56,277,300 

	RWD testing cost 
	RWD testing cost 
	$0.00 
	RWD testing cost 
	$16,800 


	Table 42 Current and enhanced decision comparison for rural minor collectors 
	Current Decision 
	Current Decision 
	Current Decision 
	# Segments 
	Enhanced Decision 
	# Segments 

	Do Nothing 
	Do Nothing 
	551 
	Do Nothing 
	367 

	Microsurfacing 
	Microsurfacing 
	11 
	Microsurfacing 
	10 

	Polymer Surface treatment  
	Polymer Surface treatment  
	340 
	Polymer Surface treatment  
	240 

	Thin Overlay 
	Thin Overlay 
	0 
	Thin Overlay 
	561 

	Medium Overlay 
	Medium Overlay 
	1476 
	Medium Overlay 
	843 

	In place Stabilization 
	In place Stabilization 
	837 
	In place Stabilization 
	1,194 

	Total # segments 
	Total # segments 
	3,215 
	Total # segments 
	3,215 

	Treatment cost 
	Treatment cost 
	$93,335,300 
	Treatment cost 
	$99,534,400 

	RWD testing cost 
	RWD testing cost 
	$0.00 
	RWD testing cost 
	$38,400 

	Table 43 Current and enhanced decision comparison at the control sections level 
	Table 43 Current and enhanced decision comparison at the control sections level 


	Decision 
	Decision 
	Decision 
	Number of sections 

	Current Practice 
	Current Practice 
	Modified Decision Trees (Approach 2) 

	DN 
	DN 
	39 
	26 

	MS 
	MS 
	0 
	0 

	PST 
	PST 
	0 
	27 

	TO 
	TO 
	2 
	46 

	MO 
	MO 
	91 
	106 

	SO 
	SO 
	0 
	0 

	IPS 
	IPS 
	12 
	15 

	Cost 
	Cost 
	$256,625,600 
	$182,974,600 


	The cost and productivity of RWD testing were based on the data obtained from ARA, Inc. as shown in Table 44 [14]. 
	Table 44 Cost and productivity of RWD testing 
	Table 44 Cost and productivity of RWD testing 
	Table 44 Cost and productivity of RWD testing 

	Functional Class 
	Functional Class 
	Productivity lane-mile/ day 
	Cost $ per lane-mile 

	Interstate 
	Interstate 
	250 
	$42 

	Secondary roads 
	Secondary roads 
	150 
	$70 

	Local Roads 
	Local Roads 
	100 
	$105 


	Monetary savings were calculated as follows: 
	Savings = current decision cost – (enhanced decision cost+ RWD testing cost) (42) 
	In lights of the results presented in Tables 37 to 41, it was observed that there is a correlation between the savings that could be achieved through the second approach and the roadway functional class. Applying the second approach on major collectors and arterials resulted on positive saving values; however, applying the enhanced decision procedure on local roads and minor collectors resulted in negative saving values as shown in Figure 69.  In addition, it is noted from Table 44 that there is a significa
	Functional Class 
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	Figure 69 Monetary saving for each roadway functional class 
	Figure 69 Monetary saving for each roadway functional class 
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	 Figure 70 Correlation between the saving amount and traffic volume 
	Develop a One-Step Enhanced Decision Making Tool 
	The objective of this task was to develop a one-step enhanced decision-making tool that would consider both structural and functional pavement conditions in treatment selection as well as the modified overlay design procedure.  To achieve this objective, an ANN-based pattern recognition system was trained and validated using pavement condition data and RWD0.1) to arrive at the most optimum maintenance and rehabilitation (M&R) decisions. The developed tool is time-efficient since it allows PMS engineers to d
	RWD measurements-based SN (SN

	Pattern recognition is one of the most important applications of Artificial Intelligence (AI).  Through pattern recognition, machines can observe information, learn to distinguish patterns of interest, and make sound and reasonable decisions about the classifications of patterns [52].  Machine recognition of patterns has been successfully applied to solve problems in a variety of engineering and scientific disciplines.  A pattern can be a fingerprint image, a handwritten cursive word, a human face, or a spe
	Figure
	Figure
	Figure
	Figure
	Pattern recognition was applied by using a feed forward ANN with a back-propagation optimization algorithm.  The network prediction accuracy is expressed in the form of “confusion matrices” instead of the common regression plots.  A confusion matrix encloses information about actual and predicted patterns.  The matrix has two dimensions, one with the actual pattern or “class” of an object, and the other with the pattern as predicted from the , P, and Pn is presented in Figure 71, where ij indicates the numb
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	Two main performance indicators can be calculated from the confusion matrix; accuracy and precision. Accuracy is the proportion of total predictions that were correct, and precision is a measure of the accuracy for a specific class [57]: 
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	Procedure Overview 
	To develop the enhanced decision-making tool, the following steps were conducted:   
	 
	 
	 
	Step 1: Initial rehabilitation decisions were selected based on the Louisiana current decision matrix; see Table 3. 

	 
	 
	RWD0.1 as the SNeff and the required SN for a req. 
	Step 2:
	 The SCI was calculated using SN
	design life of 10 years as the SN


	 
	 
	 
	Step 3: Enhanced decision were determined by utilizing the aforementioned enhanced decision trees, see Figures 67 and 68. 

	 
	 
	 
	RWD0.1 instead of the 50% loss in the structural capacity assumption. 
	Step 4:
	 Overlays were designed by utilizing the SN


	 
	 
	RWD0.1, and the output (target) layer was fed with the final enhanced decisions obtained from Steps 3 and 4. Figure 72 shows an overview of the developed procedure. 
	Step 5: 
	An ANN was trained by feeding the input layer with the PMS data and SN





	Figure 72 Overview of the system developing procedure 
	Develop the Pattern Recognition System 
	An ANN-based pattern recognition system was developed to provide decision makers with a quick and accurate tool to apply the enhanced decision matrix and the proposed overlay design methodology.  A multilayered feed-forward ANN was selected with a hard-lim transfer function, which develops outputs in the form of “0” or “1” as illustrated in Figure 17.  The network utilizes a scaled conjugate gradient backpropagation training algorithm (trainscg), and the errors are represented in the form of the mean square
	An ANN-based pattern recognition system was developed to provide decision makers with a quick and accurate tool to apply the enhanced decision matrix and the proposed overlay design methodology.  A multilayered feed-forward ANN was selected with a hard-lim transfer function, which develops outputs in the form of “0” or “1” as illustrated in Figure 17.  The network utilizes a scaled conjugate gradient backpropagation training algorithm (trainscg), and the errors are represented in the form of the mean square
	network architecture consisted of three layers; an input layer of 8 neurons; a hidden layer of 20 neurons; and a target (output) layer of 7 neurons.  The number of neurons in the hidden layer was selected based on an iterative process.  The criterion was to select the least number of hidden neurons without affecting the network performance to avoid overfitting.  

	Network Inputs. The simplest set of inputs that correlated with the enhanced decision process and that required no optimization analysis to be conducted by the PMS engineers were selected and were fed to the ANN input layer.  Calculation of the SCI req to be optimized based on the AASHTO 1993 flexible pavement design equation; therefore, it was not implemented in the ANN model.  Based on equation (31) and RWD0.1, the traffic ESALs, r), allowable loss in pavement serviceability index (ΔPSI), and the design r
	required the SN
	the AASHTO overlay design model, the SCI is a function of the SN
	the subgrade modulus of resilience (M
	the values of 90% and 2.5, respectively. The M
	function of the SN
	with the SN

	Network Targets. The final decisions obtained from the enhanced decision flowchart (Step 4) and the proposed overlay design procedure (Step 5) were used to feed the network output (target) layer. An overview of the steps followed to develop the ANN network is shown in Figure 72. Surface distresses obtained from the PMS database were first used to determine the initial M&R decisions through the current decision matrix, see Table 3.  The initial decisions along with the corresponding SCI values were then used
	distresses data, the road segment functional class, the traffic data, and the SN

	More details about the ANN structure are shown in Figure 73.  As shown in this figure, pavement surface distresses data (ALCR, RUT, RNDM, PTCH, and RUFF), the road 
	RWD0.1 were incorporated into the ANN with eight neurons in the input layer.  On the other hand, the corresponding final M&R decisions were incorporated into the ANN with seven neurons in the target layer. A hidden (processing) layer of 20 neurons, all connected to each neuron in the input and the target layers, were used to establish adequate correlations between the network inputs and targets. 
	segment functional class (arterial or collector), the traffic loads (ESALs), and the SN

	Figure
	Figure 73 The ANN-based pattern recognition model structure 
	Figure 73 The ANN-based pattern recognition model structure 


	Network Training and Performance  
	Data from 5,174 road segments were used to build the ANN model, where each segment represents one data point. An oversampling technique was utilized so that the dataset is balanced, and each treatment decision is satisfactory represented.  The oversampling process 
	Data from 5,174 road segments were used to build the ANN model, where each segment represents one data point. An oversampling technique was utilized so that the dataset is balanced, and each treatment decision is satisfactory represented.  The oversampling process 
	results in an increase in the dataset size to reach 6,828 data points.  In the DOTD database, the performance indices are reported on intervals of 0.1 mile, so that all segments have the same length (0.1 mile), so that no weighting was needed.  The data were divided into 70% for training, 15% for validation, and 15% for testing.  Training was halted when the validation set error stopped decreasing to avoid overfitting and to increase the generalization ability of the network.  The network training time was 

	The confusion matrices showed an overall pattern prediction accuracy of 96.9%, which indicates the effectiveness of this method to predict maintenance and rehabilitation decisions.  Figure 74 shows the confusion matrices for the training, testing, validation, and overall step ij with its percentage, precision of every decision, and the overall accuracy as discussed earlier, see equations (42) and (43).  All data processing was performed off-line using a commercial software package (MATLAB R2013a, The MathWo
	for the pattern recognition system.  The matrices present N

	Figure
	Figure 74 Confusion matrices of the pattern recognition system for (a) the training data set 
	Figure 74 Confusion matrices of the pattern recognition system for (a) the training data set 


	Where, 1= Do nothing, 2= Micro-surfacing, 3= Thin Overlay, 4= Medium Overlay, 5= Structural Overlay, 6= Surface Treatment, and 7= In-Place Stabilization. 
	(b) the validation data set (c) the testing data set (d) all data 
	Forward Calculations 
	Once the training phase is complete and the desired accuracy is achieved, the ANN model can be saved as a MATLAB file, which can be utilized to perform forward calculations, and predict maintenance and rehabilitation decisions.  The processing time of the forward 
	Once the training phase is complete and the desired accuracy is achieved, the ANN model can be saved as a MATLAB file, which can be utilized to perform forward calculations, and predict maintenance and rehabilitation decisions.  The processing time of the forward 
	calculation for the 5,174 decisions was found to be 0.045 seconds.  The output of the forward calculation analysis would consist of a table in which the selected maintenance and rehabilitation decision assigned for each road segment is presented by a “1,” and the other non-selected rehabilitation decisions would have an output of “0.”  Table 45 presents an illustration of the forward calculations outputs.  In addition to the MATLAB file, a MATLAB code for the trained system was generated.  Such a code can b

	Table 45 Forward calculations output form 
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	1* 
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	0 
	0 
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	0 
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	1 
	In Place Stabilization 


	Where, 1*= Do nothing, 2*= Micro-surfacing, 3*= Thin Overlay, 4*= Medium Overlay, 5*= Structural Overlay, 6*= Surface Treatment, and 7*= In Place Stabilization. 



	CONCLUSIONS 
	CONCLUSIONS 
	The objective of this study was twofold. First, the study evaluated previously-developed structural capacity indicators in predicting pavement structural deficiency based on RWD measurements.  Based on this evaluation, the research team introduced modifications to improve prediction of pavement structural capacity.  Second, in this study a methodology was developed to integrate the most promising indicator into the Louisiana PMS decision matrix.  In addition, this project assessed the cost-efficiency of RWD
	Structural Capacity Indicators 
	 
	 
	 
	The SN showed the most promising capability in identifying structurally-deficient and structurally-sound pavement sections.  In addition, the SN model was found to have the highest uniformity coefficient (82%) among the different indices.  

	 
	 
	In light of the ANOVA analysis, the SN was concluded to be the structural capacity indicator that is less affected by pavement surface conditions, while the ZRI was concluded to be the structural capacity indicator that is most affected by pavement surface conditions.  Core samples investigation also supported this conclusion. 

	 
	 
	Sections considered structurally-deficient according to the SN thresholds were found to be the same as those considered deficient according to the RI thresholds. 

	 
	 
	The SN was selected as the most promising structural capacity indicator. 


	Modifications to the SN Model 
	 
	 
	 
	RWD0.1) was developed to predict structural capacity from RWD measurements every 0.1 mile. The model showed an acceptable coefficient of determination (R) of 0.7677 and a RMSE of 0.8. 
	The modified SN model (SN
	2


	 
	 
	Core samples showed that sections that were predicted to be structurally-deficient suffered from asphalt stripping and material deterioration problems. 

	 
	 
	Results support that the developed model provides additional information that complements the existing functional indices in PMS and that could be used to predict pavement structural conditions with an acceptable level of accuracy.  


	Structural Health Index 
	 
	 
	 
	The Structural Health Index (SHI), on a scale from zero to 100, was developed to describe the structural integrity of pavement sections based on the backcalculated layer moduli of in-service pavements as predicted from FWD testing. 

	 
	 
	Evaluation and validation of the SHI was successful and indicated that the new index responded realistically to sections in poor and in good structural conditions. 

	 
	 
	It was shown that the new index provides additional information that complements the existing functional indices in PMS by successfully identifying structurally-deficient sections. 


	Rates of Deterioration 
	 
	 
	 
	RWD0.1 to categorize pavement sections according to structural conditions (e.g., very low, low, medium, etc.). 
	A structural condition index (SCI) was developed based on SN


	 
	 
	Based on the analysis of PMS data, sections with very low SCI values were observed to deteriorate significantly faster than those with high SCI values. 

	 
	 
	The rates of deterioration were found to be independent of the initial values of the performance indices for collectors; however, for the arterials, the rate of deterioration was found to be affected by both the SCI value and the initial values of the performance indices. 


	 Overlay Design 
	 
	 
	 
	An approach was developed to implement RWD measurements in AC overlay design RWD0.1 in the AASHTO 1993 . 
	procedure. The proposed procedure implements the SN
	design method instead of assuming a 50% loss in structural capacity


	 
	 
	The new overlay design procedure would allow for optimum funding allocation and would assist the designer avoid both type I error (False Positive) and type II error (False Negative). 

	 
	 
	The proposed and the current design approaches were compared using a mechanistic AC overlay design method (Asphalt-Institute); the new design approach was more effective in avoiding type I and type II errors. 


	Subgrade Resilient Modulus 
	 
	 
	 
	An ANN-based model was developed to estimate the subgrade resilient modulus based .  The model was developed based on data obtained from the testing program conducted in Louisiana’s District 05 and was validated based on data obtained from a testing program conducted at the MnROAD facility in Minnesota. 
	on RWD measurements


	 
	 
	r values calculated based on FWD and RWD measurements will not exceed the range of ± 3 ksi, which is acceptable especially at the network level. 
	The limits of agreement methodology showed that 95% of the differences between the M


	 
	 
	The ANN model showed acceptable accuracy in both the development and validation phases with coefficients of determination of 0.73 and 0.72, respectively.  The RMSE was found 12% and 8% in the development and the validation phase, respectively. 


	Cost Effectiveness Analysis of RWD Testing 
	 
	 
	 
	The SCI was converted into a scaled indicator from 0 to 100 (SSCI), and its incorporation into the PMS decision matrices was developed. 

	 
	 
	Two enhanced decision trees for collectors and arterials were developed for demonstrating the incorporation of RWD measurements and the SSCI into the PMS decision making process. 

	 
	 
	The implementation of RWD measurements into PMS decision making process as well as the State overlay design procedure would provide significant savings to the Department if applied on relatively high volume roads with an AADT of 5,000 or more (e.g., Interstates, Arterials, and Major Collectors). 


	Development of a One-Step Decision Making Tool 
	 
	 
	 
	An ANN-based pattern recognition system was trained and validated based on pavement condition data and RWD measurements-based SN to arrive at the most optimum M&R decisions. 

	 
	 
	The developed model showed an acceptable overall maintenance and rehabilitation decision prediction accuracy of 96.9%. 

	 
	 
	High model generalization ability was demonstrated as the prediction accuracy of the testing data set (which was not used in the model training) was 96.2%. 



	RECOMMENDATIONS 
	RECOMMENDATIONS 
	Based on the findings and the results of this project, it is recommended to regularly test the road segments in the State trafficked with an AADT of 5,000 or more using RWD at a frequency of once every four years. In addition, continuous deflection data should be incorporated into the Louisiana PMS for treatments’ selection as well as the State overlay design procedure. The effective pavement structural number is recommended to be used in the overlay design procedure instead of the current practice of assum
	 
	 
	 
	Additional RWD and FWD comparison testing is recommended to be conducted throughout the state of Louisiana to validate and fine-tune the models and procedures presented in this report. 

	 
	 
	Continuous pavement deflection testing such as RWD is recommended to be performed at least every 4 years to monitor pavement structural conditions at the network level. 

	 
	 
	Pavement deterioration rates at different SCI intervals should be monitored before and after applying treatments to update the enhanced decision trees.  



	ACRONYMS, ABBREVIATIONS, AND SYMBOLS 
	ACRONYMS, ABBREVIATIONS, AND SYMBOLS 
	AADT Annual Average Daily Traffic 
	AASHTO American Association of State Highway and Transportation  Officials 
	AC   Asphalt Concrete 
	ADT   Average Daily Traffic 
	ALCR   Alligator Cracking Index 
	ANOVA Analysis of Variance 
	ARAN   Automatic Road Analyzer 
	CM   Corrective Maintenance 
	0 Maximum Surface Deflection 
	D

	DN   Do Nothing 
	DOTD Department of Transportation and Development 
	ESAL   Equivalent Single Axle Load 
	FHWA   Federal Highway Administration 
	ft.   foot (feet) 
	FWD   Falling Weight Deflectometer 
	GPR   Ground Penetrating Radar 
	HMA   Hot Mix Asphalt 
	IHS Interstate Highway Significance 
	IRI   International Roughness Index 
	in. inch(es) 
	ksi Kilo pounds per square inch 
	lb. pound(s) 
	LTRC   Louisiana Transportation Research Center 
	MATT   Materials Testing System 
	NHS National Highway of Significance 
	PCC   Portland Cement Concrete 
	PCI Pavement Condition Index 
	PM   Preventive Maintenance 
	PMS   Pavement Management System 
	psi Pounds per square inch 
	PTCH Patching Index 
	RC Rehabilitation/Reconstruction 
	RHS Rural Highway of Significance 
	RI Rolling Wheel Deflectometer Index 
	RI Rolling Wheel Deflectometer Index 
	RM   Restorative Maintenance RNDM  Random Cracking Index RUFF   Roughness Index RUT   Rutting Index RWD Rolling Wheel Deflectometer SCI   Structural Condition Index SHI   Structural Health Index SHRP Strategic Highway Research Program SN Structural Number   SQL   Structure Query Language SSCI Scaled Structural Condition Index SHS State Highway of Significance TAND   Highway Need System TOPS   Tracking of Projects System TSD   Traffic Speed Deflectometer USDOT United States Department of Transportation ZRI Z
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	APPENDIX 
	APPENDIX 
	Structurally Deficient Sections According to Each Indicator  Table 46 List of structural deficient section based on SN 
	Control Section 
	Control Section 
	Control Section 
	SN 
	AVG Ruff 
	AVG ALC 
	AVG RUT 
	AVG PCI 
	AVG PTCH 
	RNDM AVG 

	167-04 
	167-04 
	2.3 
	73.8 
	85.6 
	95.7 
	76.4 
	86.2 
	88.5 

	172-30 
	172-30 
	2.4 
	62.8 
	82.7 
	91.2 
	70.5 
	84.6 
	89.8 

	328-03 
	328-03 
	2.2 
	58.6 
	75.1 
	93.2 
	66.6 
	88.0 
	78.3 

	331-01 
	331-01 
	2.0 
	49.0 
	76.1 
	85.8 
	55.3 
	65.5 
	88.1 

	332-02 
	332-02 
	1.5 
	56.1 
	68.4 
	91.6 
	51.7 
	46.1 
	71.7 

	818-03 
	818-03 
	2.4 
	67.9 
	98.3 
	86.8 
	78.4 
	94.6 
	99.2 

	160-02 
	160-02 
	1.9 
	60.8 
	70.9 
	82.0 
	62.9 
	84.9 
	75.7 

	161-06 
	161-06 
	2.1 
	75.7 
	97.6 
	92.2 
	82.6 
	97.0 
	89.5 

	164-04 
	164-04 
	2.6 
	80.0 
	75.9 
	88.7 
	73.1 
	89.1 
	79.8 

	166-04 
	166-04 
	2.4 
	67.3 
	77.4 
	92.0 
	63.2 
	58.1 
	83.1 

	184-01 
	184-01 
	1.8 
	76.9 
	95.2 
	96.6 
	84.0 
	98.8 
	90.1 

	319-05 
	319-05 
	2.5 
	75.3 
	99.5 
	97.6 
	82.8 
	89.8 
	98.3 

	328-02 
	328-02 
	1.0 
	65.6 
	74.2 
	95.0 
	66.3 
	75.0 
	81.3 

	51-08 
	51-08 
	3.0 
	79.0 
	71.0 
	82.8 
	72.0 
	96.9 
	74.6 

	161-03 
	161-03 
	2.2 
	71.0 
	100.0 
	79.5 
	79.1 
	98.6 
	99.6 

	161-08 
	161-08 
	2.8 
	76.4 
	98.8 
	74.8 
	79.6 
	100.0 
	99.9 

	333-03 
	333-03 
	3.1 
	75.6 
	99.6 
	68.9 
	73.3 
	85.2 
	99.9 

	818-01 
	818-01 
	2.6 
	64.6 
	82.3 
	89.4 
	70.4 
	80.7 
	86.8 

	818-08 
	818-08 
	2.4 
	64.1 
	68.3 
	79.7 
	62.1 
	71.2 
	77.2 


	Table 47 List of structural deficient section based on RI 
	Table 47 List of structural deficient section based on RI 
	Table 47 List of structural deficient section based on RI 

	Table 48 List of structural deficient section based on ZRI 
	Table 48 List of structural deficient section based on ZRI 

	Control Section 
	Control Section 
	RI 
	AVG Ruff 
	AVG ALC 
	AVG RUT 
	AVG PCI 
	AVG PTCH 
	RNDM AVG 

	167-04 
	167-04 
	142.2 
	73.8 
	85.6 
	95.7 
	76.4 
	86.2 
	88.5 

	172-30 
	172-30 
	150.2 
	62.8 
	82.7 
	91.2 
	70.5 
	84.6 
	89.8 

	328-03 
	328-03 
	161.4 
	58.6 
	75.1 
	93.2 
	66.6 
	88.0 
	78.3 

	331-01 
	331-01 
	170.1 
	49.0 
	76.1 
	85.8 
	55.3 
	65.5 
	88.1 

	332-02 
	332-02 
	226.2 
	56.1 
	68.4 
	91.6 
	51.7 
	46.1 
	71.7 

	818-03 
	818-03 
	130.4 
	67.9 
	98.3 
	86.8 
	78.4 
	94.6 
	99.2 

	157-02 
	157-02 
	111.6 
	73.3 
	98.6 
	95.2 
	84.1 
	97.5 
	99.1 

	160-02 
	160-02 
	153.7 
	60.8 
	70.9 
	82.0 
	62.9 
	84.9 
	75.7 

	161-06 
	161-06 
	157.0 
	75.7 
	97.6 
	92.2 
	82.6 
	97.0 
	89.5 

	164-04 
	164-04 
	128.2 
	79.8 
	75.9 
	88.7 
	73.1 
	89.1 
	79.8 

	166-04 
	166-04 
	149.6 
	67.3 
	77.4 
	92.0 
	63.2 
	58.1 
	83.1 

	171-03 
	171-03 
	119.0 
	75.4 
	82.0 
	93.2 
	79.0 
	99.3 
	85.7 

	184-01 
	184-01 
	193.5 
	76.9 
	95.2 
	96.6 
	84.0 
	98.8 
	90.1 

	51-08 
	51-08 
	97.4 
	79.0 
	71.0 
	82.8 
	72.0 
	96.9 
	74.6 

	161-03 
	161-03 
	145.3 
	71.0 
	100.0 
	79.5 
	79.1 
	98.6 
	99.6 

	161-08 
	161-08 
	110.8 
	76.4 
	98.8 
	74.8 
	79.6 
	100.0 
	99.9 

	318-02 
	318-02 
	99.6 
	67.5 
	76.7 
	94.8 
	66.4 
	71.2 
	84.2 

	325-01 
	325-01 
	88.4 
	72.8 
	92.4 
	97.3 
	79.6 
	90.8 
	91.3 

	333-02 
	333-02 
	100.7 
	80.3 
	91.8 
	83.9 
	75.5 
	78.3 
	88.9 

	333-03 
	333-03 
	106.2 
	75.6 
	99.6 
	68.9 
	73.3 
	85.2 
	99.9 

	818-01 
	818-01 
	108.3 
	64.6 
	82.3 
	89.4 
	70.4 
	80.7 
	86.8 

	818-08 
	818-08 
	126.5 
	64.1 
	68.3 
	79.7 
	62.1 
	71.2 
	77.2 

	Control Section 
	Control Section 
	ZRI 
	AVG Ruff 
	AVG ALC 
	AVG RUT 
	AVG PCI 
	AVG PTCH 
	RNDM AVG 

	296-02 
	296-02 
	234.3 
	51.6 
	65.7 
	93.2 
	42.7 
	24.0 
	82.2 

	318-01 
	318-01 
	200.9 
	75.4 
	100.0 
	88.4 
	77.8 
	73.6 
	100.0 

	328-03 
	328-03 
	250.9 
	53.8 
	65.3 
	87.6 
	61.6 
	82.0 
	70.5 

	332-02 
	332-02 
	238.4 
	64.2 
	67.9 
	98.0 
	56.3 
	50.5 
	67.0 

	818-03 
	818-03 
	307.6 
	70.0 
	100.0 
	83.6 
	80.4 
	100.0 
	100.0 

	834-08 
	834-08 
	212.9 
	62.0 
	100.0 
	90.8 
	78.0 
	100.0 
	100.0 

	862-04 
	862-04 
	230.9 
	75.0 
	49.5 
	91.6 
	60.8 
	66.7 
	82.4 

	68-01 
	68-01 
	222.6 
	83.8 
	73.4 
	93.2 
	79.2 
	97.6 
	83.7 

	68-02 
	68-02 
	297.0 
	76.6 
	95.4 
	91.6 
	85.2 
	100.0 
	97.4 

	164-04 
	164-04 
	185.6 
	55.0 
	70.2 
	66.8 
	61.5 
	100.0 
	79.4 

	166-04 
	166-04 
	228.5 
	78.4 
	94.2 
	91.6 
	85.4 
	98.0 
	93.5 

	171-03 
	171-03 
	197.4 
	76.0 
	77.0 
	80.4 
	76.9 
	100.0 
	89.3 

	184-01 
	184-01 
	345.5 
	77.4 
	96.8 
	98.0 
	85.2 
	100.0 
	89.0 

	161-03 
	161-03 
	270.0 
	43.8 
	100.0 
	81.2 
	66.4 
	100.0 
	100.0 

	161-08 
	161-08 
	206.9 
	71.6 
	100.0 
	72.4 
	77.1 
	100.0 
	97.9 

	185-03 
	185-03 
	282.4 
	78.6 
	91.7 
	94.8 
	83.2 
	100.0 
	83.7 

	325-01 
	325-01 
	205.7 
	54.6 
	98.0 
	98.0 
	72.3 
	100.0 
	83.7 

	333-01 
	333-01 
	157.3 
	85.8 
	100.0 
	94.8 
	91.4 
	100.0 
	100.0 

	333-03 
	333-03 
	223.3 
	78.2 
	100.0 
	68.4 
	77.9 
	100.0 
	100.0 

	818-01 
	818-01 
	201.6 
	70.4 
	69.0 
	85.2 
	71.2 
	77.4 
	79.2 
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