The Fate of Ethylene Glycol in the Environment

(Final Report)

by
A. A. Abdelghani
A. C. Anderson
G. A. Khoury
S. N. Chang
Tulane University

TECHNICAL	REPORT	STANDA	ARD P	AGI
-----------	--------	--------	-------	-----

				TECHNICAL REPOR				
L. Assert Ne.	1 2	Genroment Actor	uan Ma.	A Annual Catelog No.	L			
FHWA/LA-90/228								
4. Title and Sustitie			,	L Areart Date				
FATE OF ETHYLENE GL	YCOL IN	THE ENVIRONME	NT	JANUARY 1990	na Čzas			
r 								
7. ANTROYUS			· · · · · · · · · · · · · · · · · · ·	4. Perfermany Organization	on Assert No.			
A.A. ABDELGHANI, A.C		NC		N/A				
G.A. KHOURY AND S.N.				1 18. Werk Unit No.				
S. Performing Organization Nation at				700 man of Count Last?				
TULANE UNIVERSITY SO	HOOL OF	PUBLIC HEALTH	& TROPICAL	11. Contract or Grant No.				
MEDICINE 1430 TULANE AVENUE				NO. 87 - 1M(8				
NEW ORLEANS, LA 701	12			13. Type of Report and A				
12. Seensering Agency Name and Ad								
LOUISIANA DEPARTA	MENT OF T	RANSPORTATIO	N	1987 - 1989				
AND DEVELOPMENT								
				14. Spensoring Agency Co	100			
	THE STUDY WAS CONDUCTED IN COOPERATION WITH THE UNITED STATES DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION.							
The Louisiana Department of study was undertaken to assess the project were: 1. To determine the level of ext. 2. To monitor the level of EG. 3. To determine the aqueous co. 4. To determine the effect of Ext. 6. crawfish, and microorganism.	to impact of or eposure of wo in the atmost oncentrations IG in the aqu	sthylene giyeol on vicers spraying EG phere above spraye of EG due to runo atic environment is	on bridges; on bridges; of bridges; if of the chemical from scluding sorption capac	nment after spraying. To sprayed bridges to the a city to soil, acute toxicity	ne objectives of the quatic environment;			
Some conclusions include: 1. Air samples collected above sprayed bridges contained far less EG than the American Conference of Governmental Industrial Hygienists (ACGIH) recommended values; 2. EG concentrations in sediment and water collected from areas under sprayed bridges were below detection limits. EG did not adsorb to soils in laboratory sorption studies; 3. Common soil microorganisms readily degraded EG; 4. Acute toxicity values for crawfish, bluegill sunfish and soil microrganisms were far above the expected environmental concentration resulting from normal applications; 5. In a bioaccumulation study, crawfish did not concentrate EG to levels above the water concentration. The amount of EG taken up in crawfish edible tissues does not pose acute health effects to humans. One would have to consume 63,900 contaminated crawfish or 384 kg of crawfish edible tissues at one time to be affected by EG toxicity; 6. In a depuration study, crawfish were able to completely eliminate the accumulated EG within 5 to 6 days.								
		s to combissery em	ninate the accumulated	icity; I EG within 5 to 6 days.	3,900 contaminated			
Recommendations: 1) While concentrations and to applicators should stay insid the hands wearing gloves du when mixing EG to avoid a 2) Acute studies on juvenile crestages of the organisms.	oxicity of EG is the cab of ring handling erosol inhalat	were low, care shi the spray rig and of concentrated EG ion; d) Spills and	ninate the accumulated ould still be taken in I windows should be kep S; c) It is advisable to: direct application of E	handling the compound. t closed; b) Care should stand upwind of the previ	S,900 contaminated For example: a) all be taken to protect ailing wind direction oided.			
1) While concentrations and to applicators should stay insid the hands wearing gloves du when mixing EG to avoid a: 2) Acute studies on juvenile crestages of the organisms. 17. New weres	exicity of EG de the cab of ring handling erosol inhalat awfish and ot	were low, care she the spray rig and of concentrated Edition; d) Spills and ther aquatic species	ninate the accumulated ould still be taken in I windows should be kep S; c) It is advisable to: direct application of E	andling the compound. t closed; b) Care should trand upwind of the previous to water should be ave mine potential acute effect	S,900 contaminated For example: a) all be taken to protect ailing wind direction oided. ts on more sensitive			
1) While concentrations and to applicators should stay insid the hands wearing gloves du when mixing EG to avoid a 2) Acute studies on juvenile crastages of the organisms. 17. Rev werts ETHYLENE GLYCOL	exicity of EG de the cab of ring handling erosol inhalat awfish and ot	were low, care she the spray rig and of concentrated EG ion; d) Spills and ther aquatic species	ould still be taken in in windows should be kep it is advisable to direct application of E could be done to determine the co	handling the compound. t closed; b) Care should ttand upwind of the previous to water should be ave mine potential scute effect ent This document i	For example: a) all be taken to protect ailing wind direction bided.			
1) While concentrations and to applicators should stay insid the hands wearing gloves during the mixing EG to avoid a Acute studies on juvenile crestages of the organisms. 17. Rev weres ETHYLENE GLYCOL ACCUMULATION	oxicity of EG is the cab of ring handling erosol inhalat awfish and ot DEPURATIO ABSORPTIO	were low, care she the spray rig and of concentrated EG ion; d) Spills and ther aquatic species	ould still be taken in leading windows should be kep i; c) It is advisable to direct application of Ecould be done to determine the could be done to determine the could be to the public to the public	handling the compound. t closed; b) Care should ttand upwind of the previous G to water should be ave mine potential scute effect This document i through the Nati	For example: a) all be taken to protect ailing wind direction bided. ts on more sensitive			
1) While concentrations and to applicators should stay insid the hands wearing gloves due when mixing EG to avoid at Acute studies on juvenile crastages of the organisms. 17. Key werts ETHYLENE GLYCOL ACCUMULATION ACUTE TOXICITY	oxicity of EG is the cab of ring handling erosol inhalas awdsh and ot DEPURATIO ABSORPTIO BREATHING	were low, care she the spray rig and of concentrated EG ion; d) Spills and ther aquatic species	ould still be taken in leading windows should be kep a could be a publication of Electric application	handling the compound. t closed; b) Care should tand upwind of the previous to water should be aven mine potential scute effect This document i through the Nati rmation Service,	For example: a) all be taken to protect ailing wind direction bided. ts on more sensitive			
1) While concentrations and to applicators should stay insid the hands wearing gloves due when mixing EG to avoid a 2) Acute studies on juvenile crestages of the organisms. 17. New weeks ETHYLENE GLYCOL ACCUMULATION ACUTE TOXICITY BIODEGREDATION	oxicity of EG de the cab of ring handling erosol inhalat awfish and ot DEPURATIO ABSORPTIO BREATHING AEROSOL	were low, care she the spray rig and of concentrated EG ion; d) Spills and ther aquatic species	ould still be taken in leading windows should be kep i; c) It is advisable to direct application of Ecould be done to determine the could be done to determine the could be to the public to the public	handling the compound. t closed; b) Care should tand upwind of the previous to water should be aven mine potential scute effect This document i through the Nati rmation Service,	For example: a) all be taken to protect ailing wind direction bided. ts on more sensitive			
1) While concentrations and to applicators should stay insid the hands wearing gloves due when mixing EG to avoid a 2) Acute studies on juvenile crestages of the organisms. 17. New weeks ETHYLENE GLYCOL ACCUMULATION ACUTE TOXICITY BIODEGREDATION	oxicity of EG is the cab of ring handling erosol inhalas awdsh and ot DEPURATIO ABSORPTIO BREATHING	were low, care she the spray rig and of concentrated EG ion; d) Spills and ther aquatic species	ould still be taken in leading still be taken in leading should be kep leading to lead to lead to lead to lead to lead to lead to the public technical Info Springfield, V	handling the compound. t closed; b) Care should tand upwind of the previous to water should be aven mine potential scute effect This document i through the Nati rmation Service,	For example: a) all be taken to protect ailing wind direction oided. ts on more sensitive			

THE FATE OF ETHYLENE GLYCOL IN THE ENVIRONMENT

FINAL REPORT

by

A. A. ABDELGHANI, A. C. ANDERSON, G. A. KHOURY
AND S. N. CHANG
DEPARTMENT OF ENVIRONMENTAL HEALTH SCIENCES
SCHOOL OF PUBLIC HEALTH AND TROPICAL MEDICINE
TULANE UNIVERSITY
1430 TULANE AVE.
NEW ORLEANS, LA 70112

CONDUCTED FOR

LOUISIANA DEPARTMENT OF TRANSPORTATION AND DEVELOPMENT
STATE PROJECT #736-12-67
NUMBER 87-1M(B)

The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the state or the Federal Highway Administration. The report does not constitute a standard, specification or regulation.

DECEMBER, 1989

ACKNOWLEDGEMENTS

We sincerely appreciate the contribution of the following persons for their constructive role in this research project:

A. Arman, S. Cumbaa, N. Kensella, P. Landry, B. Naghavi, J. Ray, J. Rapol, M. Rasoulian, S. Shah, and W. Temple.

Special thanks to K. Kepper and his crew for assisting in the field portion of the project.

ABSTRACT

The Louisiana Department of Transportation and Development uses ethylene glycol (EG) as a deicing agent on bridges. This study was undertaken to assess the impact of ethylene glycol on workers and the environment after spraying.

Air samples collected above sprayed bridges showed that time-weighted average EG values ranged from <0.05 to 0.33 mg/m³ for aerosols and <0.05 to 10.4 mg/m³ for vapor. Air samples collected from the breathing zone of workers applying the ethylene glycol indicated ranges between <0.05 to 2.33 mg/m³, and < 0.05 to 3.37 mg/m³ for aerosol and vapor respectively. All air samples contained far less than the American Conference of Governmental Industrial Hygienists' (ACGIH) recommended values of 10 mg/m³ EG aerosol and 125 mg/m³ EG vapor.

Ethylene glycol concentrations in samples of soils, sediment and water collected from areas under sprayed bridges were below detection limits. In addition, ethylene glycol did not adsorb to soils collected from these sites in laboratory sorption studies.

Common soil microorganisms (Serratia, Citrobacter and Pseudomonas) degraded ethylene glycol within 3 days with a rate of biodegradation of 0.5 μ g/l/hr for 1% and 3% ethylene glycol concentrations. Concentrations of ethylene glycol higher than 5% exerted toxic effects on the microbial population.

Acute toxicity studies on crawfish and bluegill sunfish showed a 96-hour LC₅₀ of 91,430 mg/l for crawfish and 27,540 mg/l for bluegills. The toxicity to a mixed population of soil microorganisms was also determined. The average toxic end point (LC₅₀) for microorganisms was 114,300 mg/l. The acute toxic values of EG found in these studies were far higher than the expected environmental concentration resulting from normal Department of Transportation and Development applications.

In a bioaccumulation study, crawfish were exposed to EG at three concentrations (50 μ g/ml, 200 μ g/ml and 1000 μ g/ml) for 61 days and were subsequently transferred to clean water for a 67-day decontamination phase. During the uptake and loss phases, samples were analyzed for EG content in gills,

muscle, gastrointestinal tract and hepatopancreas. An open, one-compartment mathematical model was developed to describe the uptake and loss phases data.

Bioaccumulation was dependent upon the concentration of EG to which crawfish were exposed. The tissues did not concentrate EG to levels above the water concentration. The order of bioaccumulation among tissues was: gastrointestinal tract > abdominal muscle ≈ hepatopancreas > gills. The accumulation study showed that the amounts of EG taken up in edible crawfish tissues (abdominal muscles and hepatopancreas) do not pose acute health effects to humans. One would have to consume 63,900 contaminated crawfish or 384 kg of edible crawfish tissues at one time to be affected by EG toxicity.

The depuration study showed that crawfish were able to completely eliminate the accumulated ethylene glycol within 5 days for animals exposed to 50 μ g/ml EG and 6 days for those exposed to 200 μ g/ml EG and 1000 μ g/ml EG.

IMPLEMENTATION STATEMENT

While ethylene glycol showed low toxicity and low environmental concentrations, care should be taken in its application.

整備 路径 计分类页页

301000116

- In this study ethylene glycol was detected in the air inside the spraying truck at low levels. Although the concentration was much below the ACGIH recommended level, precautions should be taken. All applicators should stay inside the cab and windows should be kept closed.
- 2) Although there are few reports of adverse effects from direct contact with the skin, care should be taken to protect the hands by wearing gloves, during handling of concentrated ethylene glycol.

CARTURE SELECTION AND AND RESPONDED TO BETTER THE PARTIES OF THE PROPERTY OF T

- It is advisable to stand upwind of the prevailing wind direction when mixing ethylene glycol to avoid aerosol inhalation. Spraying rigs could be modified (if possible) so the nozzles are at the back of the truck.

 A zibrago
- Results of ethylene glycol testing on crawfish and bluegills showed low acute toxicity; however, this does not preclude toxicity to other aquatic species. Therefore, spills and direct application of ethylene glycol to water should be avoided.

Burn Communication of the Street Communication (Street Missission

and the first of the control of the

机工工 化双环烷 化二甲烷 医二氯化二甲

TABLE OF CONTENTS

Abstract	٠	٠	٠	•	•	٠	٠	•	•	٠	•	٠	٠	٠	٠		•	•	٠	iii
Implementation	St	a.t	em	en	t		•						•							•
List of Tables							•									•				vii
List of Figures		•			•														٠	ix
Introduction .								•			•			•					•	. 1
Objectives																				2
Methodology .				•	•	•		•					•							4
Discussion of R	esi	111	s		٠									•		•				13
Conclusion			•					•								•				51
Recommendations	•	•		•	•	•			•		•			•		•				53
References			•					•						•						54
Appendix A		•	•					•						•						58
Appendix B		•	•		•	•	•	•	•					•		•	•		•	80
Appendix C																				01

独沙老。

98 State

LIST OF TABLES

TABLE

NUMBER	on the Market of the Control of the
1.	COMPOSITION AND CONCENTRATION OF GROWTH MEDIA
2.	TIME-WEIGHTED AVERAGE (TWA) FOR AIR SAMPLES COLLECTED ON FEBRUAR
	15, 1989, FROM BRIDGES SPRAYED WITH ETHYLENE GLYCOL (EG)
	THE THE RESIDENCE AND COLD OF CORNEL WILLIAM MADERIANS
3.	TIME-WEIGHTED AVERAGE: (TWA): FOR AIR SAMPLES COLLECTED ON MARCH 10
	1988, FROM BRIDGES SPRAYED WITH ETHYLENE GLYCOL (EG)
	at was a expression of making the second of the second
4.	CEILING VALUES FOR AIR SAMPLES COLLECTED ON FEBRUARY 15,1989, FROM
	PERSONS SPRAYING ETHYLENE GLYCOL (EG) ON BRIDGES AND CARREST CONTROL OF THE CONTR
5.	CEILING VALUES FOR AIR SAMPLES COLLECTED ON MARCH 10, 1989, FROM
	PERSONS SPRAYING ETHYLENE GLYCOL (EG) ON BRIDGES
	EST CONTROL OLYCOL (BC) SCRPTION STUDY DAIL
6.	WATER, SEDIMENT AND SOIL SAMPLES COLLECTED UNDER BRIDGES SPRAYED WITH
	ETHYLENE GLYCOL ON FEBRUARY 15, 1989 (C. dian (C., desertious) - Constants
	Services Buyance in a reserve week as to be used as
7.	WATER, SEDIMENT AND SOIL SAMPLES COLLECTED UNDER BRIDGES SPRAYED WITH
	ETHYLENE GLYCOL ON FEBRUARY 15, 1989 The distance the transfer of the state of the
	in the state of the control of the money as
8.	BRIDGE DIMENSION AND SPRAYING TIME AND RATE
	en elektroniste i elektroniste a elektroniste elektroniste elektroniste elektroniste elektroniste elektroniste
9.	EXPERIMENTAL DATA FROM ACUTE TOXICITY TEST OF ETHYLENE GLYCOL (EG)
	ON CRAWFISH (<u>PROCAMCARUS</u> <u>SP</u> .)
	e elegista a escato de la como la como la compete per el destruga personal anticolar anticol
10.	EXPERIMENTAL DATA FROM ACUTE TOXICITY TEST OF ETHYLENE GLYCOL (EG)
	TO BLUEGILL SUNFISH (LEPOMIS MACROCHIRUS)
	to the state of th
11.	BAUER ASSAY: T50 AND ACTIVITY QUOTIENTS FOR MICROBES EXPOSED TO
	ETHYLENE GLYCOL (EG)
	,我们就是一个大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大

- 12. TOXICITY OF ETHYLENE GLYCOL (EG) TO SOIL MICROORGANISMS AS MEASURED BY TURBIDITY (OPTICAL DENSITY)
- 13. CONCENTRATION OF ETHYLENE GLYCOL (μ G/G) IN SELECTED CRAWFISH TISSUES AT THE END OF A 61-DAY EXPOSURE FOR THE SYSTEMS
- 14. KINETIC PARAMETERS (Ki, Ko) AND BCF OBTAINED USING MATHEMATICAL MODEL
- 15. BIOLOGICAL HALF-LIFE (DAYS) OF ETHYLENE GLYCOL (EG) IN SELECTED TISSUES OF CRAWFISH FOLLOWING EXPOSURE FOR 61 DAYS TO 50 μ G/ML, 200 μ G/ML AND 1000 μ G/ML EG
- 16. CUMULATIVE ¹⁴CO₂ LEVELS GENERATED FROM THE BIODEGRADATION OF ETHYLENE GLYCOL (EG) TEST RUN
- 17. RATE DATA FOR MICROBIAL DEGRADATION OF ETHYLENE GLYCOL (EG)
- 18. ETHYLENE GLYCOL (EG) SORPTION STUDY DATA

LIST OF FIGURES

FIGURE

NUMBER

- 1. Apparatus of the air sampling train
- 2. The medial lethal concentration of ethylene glycol to crawfish by probit analysis and line of best fit (EPA probit analysis program, Version 1.3)
- 3. The medial lethal concentration of ethylene glycol to bluegills (Lepomis macrochirus) by probit analysis and line of best fit
- 4. Toxicity of ethylene glycol to microorganisms based on the Bauer Assay
- 5. Toxicity of ethylene glycol to microorganisms based on the Alsop Assay
- 6. Average bioconcentration of EG by gills during continuous exposure for 61 days to 50, 200, and $1000 \mu g/ml$ EG
- 7. Average bioconcentration of EG by muscles during continuous exposure for 61 days to 50, 200, and 1000 μ g/ml EG
- 8. Average bioconcentration of EG by G.I. during continuous exposure for 61 days to 50, 200, and $1000 \mu g/ml$ EG
- 9. Average bioconcentration of EG by hepta, during continuous exposure for 61 days to 50, 200, and 1000 μ g/ml EG
- 10. Depuration of EG by gills during loss phase for 67 days in Systems I, II, and III
- 11. Average depuration of EG by muscles during loss phase for 67 days in Systems I, II, and III

- 12. Average depuration of EG by G.I. during loss phase for 67 days in Systems I, II, and III
- 13. Average depuration of EG by hepat. during loss phase for 67 days in Systems I, II, and III
- 14. Schematic representation of mathematical model used for data analysis
- 15. Cumulative average of ¹⁴CO₂ of three triplicate concentrations of ethylene glycol

INTRODUCTION

Ethylene glycol (EG) is a colorless, odorless, viscous, water-soluble liquid with a bitter sweet taste (Merck Index, 1983) at Inc 1983; 4:5 billion pounds were produced in the United States (USITC Publication #1183) and Ethylene glycol is used for several purposes; It is used as an antifreeze, a deicing agent on bridges and airport runways, and as a solvent in the plastic industry in manufacturing fibers (Merck Index, 1983) and as a solvent in the plastic industry

Human exposures to ethylene glycol by ingestion (Goodman et al., 1980; Terlinsky, 1980; Grant 1974), inhalation (Trofsi, 1950; Dubeikovska et al., 1973) and by dermal exposure (Dawson, 1976); are reported in the literature. Ethylene glycol enters the environment othrough effluents comings from manufacturing industries; spills and through its use as a deicing agent on bridges, airplanes and airport runways.

This study was undertaken to assess the fate of ethylene glycol in the environment including: 1) potential exposure of workers applying EG, 2) potential contamination levels in water, soil and sediment under aprayed bridges, 3) of its foxicity to paquatic organisms, and soil o microorganisms, and 4) bioaccumulation by aquatic organisms, as bus could be able to the applying to the particular of the particular of the applying to the particular of the applying to the applying to the applying the particular of the applying to the applying the particular of the applying the

The louisians Department of Transforment and Development uses athylone glycol as a deicing spent of highway bridges (Kepter 1989) Environmental contemination may result when bridges are surfed while the glycol and minoff reaches surface where and religious result industrial while spent antifresse, and application of MC to air or reverse that are the continues to anythouse the contemporary and application of MC to air or reverse that are the continues to air or reverse that are the continues to air or reverse that are the continues to air or reverse that are the contemporary and application of MC to air or reverse that are the contemporary to the contemporary that the contemporary contemporary are the contemporary to the contemporary that the contemporary are the contemporary than the contemporary than the contemporary that the contemporary than t

The toxicity of ethylene plyce) departs consists ansertaintly of the appeales; for example, It is five times mass to it is constant that no pooling (bearley, 1983) or ingestion of ethylene plyces by house our cassin is terrically rescabiling alcoholic interication with starts, droven see, and sintred speech,

OBJECTIVES

The objectives of the project were:

- To determine the level of exposure of workers spraying ethylene glycol on bridges as a deicing agent.
- To monitor the level of ethylene glycol in the atmosphere above sprayed bridges.
- To determine the aqueous concentrations of ethylene glycol due to runoff of the chemical from sprayed bridges to the aquatic environment.
- 4. To determine the effect of ethylene glycol in the aquatic environment including:
 - a. sorption capacity to soil
 - b. acute toxicity to bluegill sunfish, crawfish, and microorganisms
 - c. bioaccumulation in crawfish
 - d. biodegradation by soil microorganisms

LITERATURE REVIEW

Ethylene glycol is used as an antifreeze in cooling and heating systems, in hydraulic brake fluids and as a solvent in the paint and plastics industries. It is used in the formulation of printers' inks, stamp pad inks, and inks for ball-point pens. It serves as a softening agent for cellophane and as a stabilizer for soybean foam used to extinguish oil and gasoline fires. It is used in the synthesis of safety explosives, glyoxal, plasticizers, elastomers, synthetic fiber, and synthetic waxes (Merck Index, 1983).

The Louisiana Department of Transportation and Development uses ethylene glycol as a deicing agent on highway bridges (Kepper, 1989). Environmental contamination may result when bridges are sprayed with ethylene glycol and runoff reaches surface water and soil. Industrial waste, spills, spent antifreeze, and application of EG to airport runways and aircraft could also contribute to environmental contamination.

The toxicity of ethylene glycol depends upon the susceptibility of the species; for example, EG is five times more toxic to humans than to poultry. (Beasley, 1980). Ingestion of ethylene glycol by humans can result in toxicity resembling alcoholic intoxication with ataxia, drowsiness, and slurred speech,

and possibly coma, convulsions, and death (Parry, M. F., 1974; Berman, L. B., 1957). Drinking antifreeze fluid causes transient stimulation of the central nervous system followed by depression,

vomiting, drowsiness, coma, respiratory failure, convulsions, and renal damage, which may proceed to anuria, uremia, and death (Merck, 1983). A fatal case was reported in which a 1/4 to 1/2 pint of antifreeze solution was ingested; acute meningoencephalitis occurred followed by anuria. Death from renal failure resulted after 12 days (Clay, 1982)

Human plasma clearance half-lives of ethylene glycol following oral administration range from 2 to 6 hours (Reif, 1950; Winek, 1975; Peterson et al., 1981). Some work has been done on the acute toxicity of EG in other species. Toxicity of ethylene glycol to soil microorganisms (Pseudomonas) was studied by Bringmann and Khun (1980), who reported a toxicity threshold of > 10,000 mg/l. The 24-hour media tolerance limit (TIM) to brine shrimp and crawfish was found to be > 20,000 and 169,000 mg/l respectively (Price et al., 1974) The LC₅₀ for common shrimp and rainbow trout were reported to be > 100,000 mg/l (Bachmann, 1974) and > 18,500 (Jank et al., 1974) respectively.

ខាត់ លើ១៩វឌ្ឍិ លាក់ ចំគុសសេតុក្

SHALIMONE ALA

Ant society a follows a given the bridge were or invest with an air some treath as follows a given then, a cathy a man follows and already of his or plant stiff a gold (from a bit of the society) and, heads of his or plant in the society of the s

(NIOSH HEOLY)

d an to same with an assistance of the land and the control of the control of the situation of a same as a same of the control of the control

METHODOLOGY

FIELD SAMPLING OF AIR, WATER AND SEDIMENT

A truck equipped with a spraying rig was used to apply a 50% ethylene glycol concentration on three designated bridges. The spray rig, mounted under the front bumper of the truck, consisted of a ten-foot bar fitted with spray nozzles which directed an overlapping-fan pattern to the street. These bridges were selected because they are sprayed with 50% ethylene glycol on a routine basis during freeze conditions and because of their close proximity to each other. A fourth bridge in the same vicinity that had no history of spraying was used as a control. Selected bridges were above running streams so that water and sediment samples could be collected.

Air samples were collected from the atmosphere above the sprayed bridges and from the breathing zone of the workers mixing and spraying the chemical. Water, sediment and soil samples were also collected from under the sprayed bridges.

AIR SAMPLING

Air samples above the bridge were collected using an air sampling train as follows: a glass tube, 8 cm by 6 mm ID, contained two sections of 20/40 mesh silica gel (front=520 mg, back=260 mg) separated by a 3 mm urethane foam plug. A 13 mm glass fiber filter, free of binders in a millipore filter holder, precedes the front section. A sampling SKC pump was connected to this tube and accurately calibrated at a flow rate of 0.2 liters per minute (see Figure 1). The glass fiber filter takes up ethylene glycol aerosol and the silica gel accumulates the ethylene glycol vapor. The concentration of ethylene glycol determined on both the filter and silica gel is the total EG in the air sample (NIOSH, 1977).

Sampling units were placed at three locations on the curb of each bridge at a height of 8 inches (ends and middle of each bridge). Wind velocity was 6 miles per hour and the temperature was 42° F. Air samples were taken at about 2-hour intervals for approximately 8 hours following spraying. Air from the breathing zone of the spray-rig driver and a passenger were drawn through the same type of air sampling train (Figure 1) for 15 minutes for ceiling

concentrations. Eight persons were monitored on two separate spraying occasions, to give a total of 16 worker exposure samples. The driver's window was closed while the passenger window was open during the spraying and sampling. Normally both windows are closed due to the cold weather when spraying takes place. Filters and silica gel tubes were replaced every 2 hours on the sampling train. As soon as the air samples were collected, the glass filters were preserved in a vial containing 1 ml of 2% propanol. The open ends of the silica gel tubes were capped, each section (front and back) was collected in a vial and 1 ml of 2% propanol was added to preserve the samples for analysis (NIOSH, 1977) Application of the transfer of t

Standard the this was the grain and the anstructure and the second of th 30 11 是 表现不是有的特殊。 经基础<u>还是基础的人的。</u> e tela la la completa de la completa 可用的社会通過機能主義的。 **機能**自由自身是在中国自己企业的特殊的特殊的特殊。 自身重新社会基础。 这种种种社会的原则,对于一致自己的政策的。 等 1873、1872年的推荐的中华市。 **社会**中国的社会 一部的企业 数字证明的 en en grifelikarikinde kajariking kendar tendar kendarangan den en like en kendaran kendaran kendaran kendaran Alama filitar. o de la cuelles édéméts de la constant germetibe on the one that the holder over thing it to a e ever retroubly got and timed time · 明明日中央重要者の時代記書記事と、「「意知され」いまます。 (日本の大学) のないかける (日本のない) · 省(金)以 69年9月1日日本日本 医阿克里氏 (1995年) 1995年 1 AMERICAN COMPANY SECTION OF THE SECRETARY AND ASSESSMENT 19 19140 Parularathany to the 等数位,数据30线的技术中心,这些一个的数据数据,一定是自己的文化设备工程,但如果116.5mg。 and the state of t ែល។ ដែលនៅ ខេត្តស្វាស្ត្រ 😓

Figure 1. Apparatus of the air sampling train the constitution of the constituent of a property of the constitution of the constituent The state of the restriction of the second state of the second se (注:中、原文文学)文材100、产品(图图)是《中国主义中国基本的大型模型、更整理器、数据的大型企业(1910年)是中国共和国企业的企业的企业的企业的企业的企业的 大大 (1) 主义的主义 (1975) (1974年) 1975 (1975) (1975) (1976) (19 · 你就的我们就没有这事。这么多,会就要被 4 1 1 (1976) Control da establishe final de la prima de la francia de la colonidad de la colon

WATER, SEDIMENT AND SOIL

besolo water, sediment and soil samples were collected from under the sprayed bridges at three locations: upstream, underbridge and downstream. Water samples were collected from a depth of 6" to 12" and placed in clean glass containers (acid washed and rinsed with distilled water). Sediment samples were collected from the same areas, placed in clean glass containers and properly capped.

ACUTE TOXICITY TO CRAWFISH, BLUEGILLS AND SOIL MICROORGANISMS

Ethylene Glycol was purchased from Shell Oil Company (Geismar, Louisiana). The material, 99.9% pure, with a specific gravity of 1.115, was used for all test concentrations. Crawfish (<u>Procambarus species</u>) were purchased from a local vendor in New Orleans, Louisiana. Bluegill sunfish (<u>Lepomis macrochirus</u>) were donated by Louisiana Wildlife and Fisheries (Alexandria, Louisiana). A mixture of heterotrophic bacteria was collected from three sources: soil, sediment, and activated sludge.

Adult crawfish measuring 3.2 ±0.5 inches in length and weighing 13.6 ±0.6 grams and juvenile bluegills measuring 1.6 ±0.4 inches and weighing 0.85 ± 0.20 grams were used. Both organisms were acclimatized to laboratory conditions (Temp. 21°C ±1, pH= 7.5 su and DO = 8.5 mg/l) in all glass aquariums (36"x16"x12") for three weeks prior to the study. Aquariums were supplied with dechlorinated (carbon-treated) and aerated tap water (Temperature, 21°C ±1.0; pH = 7.5 su; DO = 8.5 mg/l; total hardness 250-270 mg/l as CaCO₃; pH=7.5 ±0.2; Alkalinity 47-65 mg/l as CaCO₃; NH₃-N and total residual chlorine were below the detection limits). A 14-hour dark and 10-hour light photoperiod was simulated.

Toxicity tests were conducted according to Standard Methods (1985) and the EPA method for static-tank acute toxicity tests (EPA, 1985). Five test concentrations and a control were used. A duplicate at each concentration was used to evaluate variability.

Dissolved oxygen, pH and temperature were recorded daily. Dead animals were counted and removed daily. The ethylene glycol concentration was measured (Appendix A, A-1 through A-10). Tests for both crawfish and bluegills were run for 96 hours.

The LC_{50} was estimated using the EPA probit analysis computer program version 1.4 for calculating effective concentrations (EC).

Bacterial toxicity assessment was done following the methods described by Alsop et al., (1980); and Bauer et al., (1981). The Alsop Assay measures turbidity as an indication of bacterial growth. Several concentrations of ethylene glycol and a control were used. The degree of growth inhibition was determined by measuring the turbidity (optical density at 530 nm) of the test medium at various concentrations after 16 hours of exposure. The measured optical density value was calculated as a percentage of the control system. The percent of control values were then plotted against the log of test sample concentration. The test concentration corresponding to a 50% reduction in optical density, termed 50% inhibition concentration. (IC50) was taken as the end point of toxicity.

The Bauer Assay utilizes short-term (20 min.) oxygen depletion as the measure of toxicity. The kinetics of dissolved oxygen depletion by a mixed microbial population following exposure to different ethylene glycol concentrations and a control were evaluated.

ACCUMULATION, DISTRIBUTION, STORAGE AND ELIMINATION STUDIES IN CRAWFISH

Crawfish were declawed to eliminate predation and placed in 50-gallon, all-glass aquariums. Plastic-coated chicken wire was coiled and placed in each aquarium to provide ample living requirements for the crawfish.

Crawfish of both sexes were divided into four groups of 500 crawfish each and placed in six 50-gallon aquariums (measuring 12° x18"x48" each). Crawfish were adapted to laboratory conditions (21° C, pH 7.4 \pm 0.2, dissolved oxygen 7.3 \pm 0.2 mg/l) for one month. An appropriate amount of ethylene glycol was added to three groups of crawfish to yield concentrations of 50 μ g/l, 200 μ g/l and 1,000 μ /l EG. The fourth group was used as a control and no ethylene glycol was added. A flow through system was used. The total volume of water in aquariums was replaced once every two days. Ethylene glycol was added by using a peristaltic pump adjusted to deliver the proper concentration of ethylene glycol when mixed with incoming fresh tap water. Total volume of water in the aquariums was filtered once every six hours and was accased continuously. Crawfish were fed Quaker Oats daily. Excess food and crawfish excreta were siphoned out daily using a plastic hose.

Following 61 days of continuous exposure of crawfish for the uptake study, aquariums were emptied, rinsed well and refilled with dechlorinated tap water. The remaining crawfish were placed in the clear aquarium to start the

used as in the contamination phase. This phase was carried on for 67 days. Three crawfish were randomly sampled daily from each system and rinsed with tap water, followed by deionized distilled water. Crawfish were dissected into gills, hepatopancreas, G.I. tract and abdominal muscle. Tissues were extracted and analyzed for ethylene glycol content using gas chromatography as indicated in the section "Sample Preparation and Analysis."

BIODEGRADATION

Biodegradation of ethylene glycol was followed by a mineral salt medium (Table 1) containing ethylene glycol as the sole carbon source for bacteria. The system was spiked with radiolabelled [1,2-14C] ethylene glycol (10 mCi mmol⁻¹), which was obtained from ICN Radiochemicals (Irvine, California).

TABLE 18 process of the control of Name

COMPOSITION AND CONCENTRATION OF GROWTH MEDIA

K ₂ HPO ₄	1300	TRANSPORT OF THE STATE OF THE STATE OF THE
_ •	347 - 135, 1 - 1 - 1 826	All the state of the state of
(NH ₄) ₂ SO ₄	1000	
OOC12.0D2U		AND THE STATE OF THE WORLD STATE OF THE STATE OF
NaCL	Sometime of the source of the	The Constitution of the second
FeSO ₄ .7H ₂ O	িবিশ্ব ক্রিক্টের বিশ্ব কর্ম করে। তার বিশ্ববিদ্যালয় স্থানির প্রায়ল প্রায়ল প্রায়ল প্রায়ল প্রায়ল প্রায়ল প্ 10	Constant in a graph of the graph of the contract of the figure
cuso ₄ , 5H ₂ 0 de calle canal darag	akel ookakees 1 10. 00koo eese. Makkees makees (19. <mark>1</mark> 1.15mgan eese)	

Microorganisms for the biodegradation study were collected from three sources: soil, pond water, and the influent of a municipal waste water treatment plant. The microorganism mixture was acclimated to 3% ethylene glycol. The culture was then used in 1%, 3%, and 5% ethylene glycol concentrations. Each concentration was prepared in triplicate and placed in sterile gas washing bottles.

Professional Committee Control of the Control of th

Biodegradation was followed by measuring the isolation of ¹CO₂ produced. The evolved ¹⁴CO₂ was trapped in a mixture of monoethanolamine and 2-methoxy ethanol (10:7 v/v) (9,10). The growth media was slowly acrated with filtered compressed air which continuously flushed ¹⁴CO₂ into the trapping solution. At selected time intervals, 1 ml sample of the CO₂ trapping solution was taken for analyses.

A fraction on a second

Radioactivity was measured by liquid scintillation using a 3 channel Beckman LS-150 liquid scintillation instrument. Samples were placed in 20-ml polypropylene scintillation vials from Beckman (Houston, Texas) containing 14 ml of CytoScint, a biodegradable-nontoxic liquid scintillation cocktail (ICN Biomedical, Inc. Irvine, California).

The trapping solution was changed at each sampling time interval. The controls had the same growth media with the labelled ethylene glycol and 3% unlabelled ethylene glycol, but no bacteria were added. Sterile conditions were maintained. Two controls were used: one in the light and the other covered with aluminum foil to simulate degradation in the dark. This was done to check for possible photodegradation. The experiment was followed for 15 days at room temperature.

SOIL ADSORPTION-DESORPTION

Five soils were used, four were taken from fields near bridges that are frequently sprayed with ethylene glycol during winter. The fifth soil was montmorillonite, a laboratory clay (Dressier, Inc., Houston, Texas). One hundred grams of each soil was heat-dried at 103°C. The dried soil was then powder-ground in a blender. The grounded soil was passed through a 50 mesh screen. Ten-gram samples of the soil were placed in 250 ml Erlenmeyer flasks, which were acid-washed and rinsed. The flasks were then covered with cotton and aluminum foil and sterilized in an autoclave. One hundred ml of selected concentrations of labelled ethylene glycol were then added to each flask containing 10 grams of sterile soils. A duplicate flask for each sample/concentration was used to establish the time when samples reach equilibrium or steady state. Contents of flasks were mixed using a mechanical

wrist shaker. Every hour the "equilibrium" flask was removed, contents centrifuged and 1 ml of the supernatant counted by liquid scintillation (as, described below) until two consecutive samples gave the same reading. At that time the test was terminated and all samples were centrifuged and counted for 14C. The supernatant of each soil was then decanted into a container for proper. disposal. The extraction and a begin to the first of the contraction o

For desorption, 100 ml of clean autoclaved distilled water was added. to the precipitated soil and shaken for the same time required for samples to reach equilibrium during the adsorption study to The samples were then centrifuged. and 1 ml of the supernatant was counted by a liquid scintillator, remove adalla

and simil a Radioactivity was counted by liquid scintillation using a 3 channel. etrevary is, 1989 thos eridors senaver heth etherene clyopi (80) Beckman LS-150 instrument. Analysis was performed on 14CO2. Samples were placed. Dridge. Sompling Conc. of in 20-ml polypropylene scintillation vials from Beckman (Houston, Texas) Ala Tangla containing 14 ml of CytoScint, a biodegradable-nontoxic liquid scintillation cocktail (ICN Biomedical, Inc., Irvine, California)?

this depositing concentration of the constant property of the constant of the

SAMPLE PREPARATION AND ANALYSIS

Middle Soil, Sediment and Water: 500 col

One hundred grams of soil and sediment samples were extracted with iotopa ako **81.**3416 **300**0835 -Teaplerature of Metector: W ii an equal volume of 2% propanol. The extracted samples were centrifuged at a speed of 2000 rpm. The supernatant was then analyzed by chromatography. water samples were centrifuged at 13,000 rpm and the supernatant was analyzed. AMPROS. 3 6 ROD Retention time:

一、河南南北部、西南东南南南西南南南南 (1984年)

U 95%

144 J. M. B. S. W.

QUALITY CONTROLS AND ASSURANCE

Calledon Gen.

counted to sometimes

3 69 1

Glass filters, the front and the back of the silica gel tubes, were extracted with 1 ml portions of 2:98 2-propanol-water (v/v). The extract was combined and analyzed.

Crawfish Tissue:

3 / 1 / 1 / 1 (A)

Each sampled crawfish was rinsed with tap water, then with distilled water, and dissected into gills, hepatopancreas, gastrointestinal tract and muscle tissue. Each tissue was then individually weighed and homogenized in a microblender with 5 ml of 2% propanol and centrifuged. The supernatant was then analyzed.

Soil, sediment, water, air and crawfish extracted samples were analyzed using a gas chromatography method recommended by NIOSH (1977) with slight modification. The Carbowax packed glass column was replaced with a DB-wax megabore with an ID of 0.53 μ and 15 meters long. The detection limit was enhanced three times with a detection limit of 1 mg/l.

The operating conditions for gas chromatography were as follows:

Carrier Gas:

Helium

Temperature of column:

165°C

Temperature of injection port:

250°C

Temperature of detector:

300°C

Flow rate of helium:

13 ml/min

Flow rate of hydrogen:

44 ml/min

Flow rate of air:

304 ml/min

Retention time:

Approx. 3.6 min

QUALITY CONTROLS AND ASSURANCE

See Appendix B.

DISCUSSION OF RESULTS

1.31

			1.18 <i>/</i> **			
			in a fin e de processe	enie. Na uzwajena se	ar de la companya de Companya de la companya de la compa	
FIELD STU	DIEZ				red jor jon	34
Air, Water	and Sedime	ent: Theres	V	en en en en en en el allafradistres.	4.4	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.8 . 0010.	- 200 (#33会)	977 1 1 1898 A. P.	J. Branch V. V. Salara	فيعا فيوفيون
	IMDIES	2 and⊹3∀rêpr	esent the dat	a from air s	amples colle	acted over
a)	Air Sample	The second section of the second seco	e e de la companya d			70000 0701
bridges sp	prayed with	a 504 ethyle	ene glycol)co	ncentration	on February	15, 1989,
and March	10, 1900.	THE CIME- A	Weighted aver	age (TWA) va	lues for ae	rosols or
particulat	es ranged f	rom less the		3 mg/m ³ and f	34 (65 / M	0.05
			11 0.03 60/0.3	o mg/m. who i	rom less tha	an 0.05 to
10.34 mg/m	3 for vapor			42.2		. 5 3 1690 .
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· 7, 📢 🖑	5.68	2.6.3	(alisain	
		10.38	TABLE 2	420	Sed	- 15m C #35
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ិធិស្ធសិក្សីបន្	1, 1/2	413 E	40. 65	277 Tha	
	TIME WEIGH	TED AVERAGE	(TWA) FOR AL	SAMPLES COL	LECTEDON	Creenwell
FEB	WONET TO T	AOA LKOW RKI	DGES SPRAYED	WITH ETHYLER	NE GLYCOL® (E	G) zgadvoð
DIIGE	Location		of Conc. of	Conc. of	Total Con	c.
hanser til pæ	mass Conson	The real October	EG. VELOSO	Conc. of Leg Vapor	of Ec. in	Joor Md.
	<0.05	(min. i>	(me/m³)	(mg/m³)	Alr: Sampl	
	AND THE SECURITION OF THE PERSON OF T			and the second s		
Hwy. 61	Front	385	0.0344 82	sw 0:37srqa 3	eri Or427 custos	Afr temen
	Middle	303	0.08	1 52	1 604	
	End	. 12.2 /385 €5.	o 110tla 1	1.50m/d/1	<i>া</i> 1 7. 617 বুলাসর	girt Lamasta
Joor Rd.	and the second section of the secti	desirence and and analysis and a second supplier of the second	; or of historian electricists arrestly a participation of the spine was	· · · · · · · · · · · · · · · · · · ·	erit i a sa a a a a a a a a a a a a a a a a	The State of Association and Associated Company of the Association (Associated Company)
	Front	350 350	0.31		2.636	
Daizaltas	Profess vi	330 - 1380 - 201	U.14	2.35 1932:93 d. bayan	2.495	
	E E E		\$1 <0.103 383	1932,93 C Dame	* 2.930:T	
Greenwell"	Front301	. 1.133\$201094	- ca - 6503 88 - 3	: 6 1.49 5 ind :		
Springs Rd	. Middle	335	0.32	2.85 6 4918: 2006	07.102/8 960 2 102	anad moun
ona locore	e Ender C	் 33 5 9.0 ்ஷ	네크 0:1 (3 # ^) :	1.03 1.6018: 2001	3.103 ** /n 210 as s	1986. Th
Joor Rd. as	Front ု	ាត់ 1406 ៥១១៤	⊬ (<0.05 ∞98∀	10:05 V Co	00058:8111	from less
Driege Z	Middle	406	<n n5<="" td=""><td>በ ለፍ</td><td>A AE1</td><td>and the first transfer of</td></n>	በ ለፍ	A AE1	and the first transfer of
Control	b End gastabl	- 406 (1∖3 € ±	<0.05	7 0.07 HEDDA	5 0.07402ex	ะกอก เกะ
				,		
Air tempera	ature during	spraying wa	as 84°F		. 😅	for vapo
10	_					
*Sampling I	oump was cal	librated at	a flow rate o	f 0.2 1/min.		
				化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	こうちょうり しゅいき かんりょう カステー	

TABLE 3

TIME WEIGHTED AVERAGE (TWA) FOR AIR SAMPLES COLLECTED ON MARCH 10, 1988 FROM BRIDGES SPRAYED WITH ETHYLENE GLYCOL (EG)

Bridge	Bridge Location	Sampling Time*	Conc. of EG Aerosol	Conc. of EG Vapor	Total Conc.
		(min.)	(mg/m^3)	(mg/m ³)	Air Sample (mg/m ³)
Hwy. 61	Front Middle End	545 545 545	0.12 0.20 0.23	2.61 3.92 0.57	2.73 4.12 0.81
Joor Rd. Bridge 1	Front Middle End	420 420 420	0.03 0.13 0.18	3.30 5.68 10.38	3.33 5.81 10.57
Greenwell Springs Rd.	Front Middle End	445 445 445	0.10 0.29 0.07	2.62 1.80 4.23	2.72 2.10 4.31
oor Rd. Bridge 2 Control	Front Middle End	445 445 445	<0.05 <0.05 <0.05	<0.05 <0.05 <0.05	<0.05 <0.05 <0.05

Air temperature during spraying was 44°F

*Sampling pump was calibrated at a flow rate of 0.2/1 min.

Tables 4 and 5 represent ceiling values for air samples collected from persons spraying bridges with 50% EG on February 15, 1989, and March 10, 1988. The ceiling values ranged from less than 0.05 to 2.33 mg/m³ aerosol and from less than 0.05 to 3.37 mg/m³ vapor. All values in Tables 2-5 are much less than the recommended ACGIH ceiling level of 10 mg/m³ for aerosol and 125 mg/m³ for vapor.

TABLE 4

CEILING VALUES FOR AIR SAMPLES COLLECTED ON FEBRUARY 15,1989
FROM PERSONS SPRAYING ETHYLENE GLYCOL (EG) ON BRIDGES

Bridge	Bridge	Sampling	Conc. of	Conc. of	Total Conc.
	Location	Time*	EG Aerosol	EG Vapor	Of EG In
	, 	(min.)	(mg/m ³)	(mg/m ³)	Air Sample (mg/m ³)
Hwy. 61	Passenger	15	<0.05	2.36	2.36
	Driver	15	2.33	2.20	4.53
Joor Rd.	Passenger	15	<0.05	<0.05	<0.05
Bridge 1	Driver	15	1.27	<0.05	1.27
Greenwell	Passenger	15	1.83	3.36	5.20
Springs Rd.	Driver	15	0.96	1.73	2.70
Joor Rd. Bridge 2 Control	Passenger Driver	15 15	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05

Air temperature during spraying was 84°F

*Sampling pump was calibrated at a flow rate of 0.2 1/min.

. Naostou sagav

(Naratia)1. 198:

an expensional sector Anto

sackacher, 1 These constant

1967年,1967年,1967年,1967年,1967年,1967年,1967年,1967年,1967年,1967年,1967年,1967年,1967年,1967年,1967年,1967年,1967年,1967年,1

. 1 182 residence their each

was the second tested bedeilding

of the could be the the control of the control of

TABLE 5

CEILING VALUES FOR AIR SAMPLES COLLECTED ON MARCH 10, 1989
FROM PERSONS SPRAYING ETHYLENE GLYCOL (EG) ON BRIDGES

Bridge	Bridge Location	Sampling Time*	Conc. Of EG Aerosol	Conc. of EG Vapor	Total Conc. Of EG In
		(min.)	(mg/m ³)	(mg/m^3)	Air Sample (mg/m ³)
Hwy. 61	Passenger	15	<0.05	<0.05	<0.05
	Driver	15	1.20	<0.05	1.20
Joor Rd.	Passenger	15	1.50	1.00	2.50
Bridge 1	Driver	15	<0.05	0.90	0.90
Greenwell	Passenger	15	<0.05	0.73	0.73
Springs Rd.	Driver	15	0.50	<0.05	0.50
Joor Rd.	Passenger	15	<0.05	<0.05	<0.05
Bridge 2 Control	Driver	15	<0.05	<0.05	<0.05

Air temperature during spraying was 84°F

Potential toxic concentrations from inhalation are unlikely at room temperature or colder temperatures due to ethylene glycol's vapor pressure. Vapor poisoning usually occurs only if the liquid is heated or aerosolized (Marshall, 1988). A group of volunteers exposed to 30 mg/m³ EG for 20 hours per day over two weeks complained of throat irritation, mild headache and low backache. These complaints became more marked when concentrations of EG were increased to above 140 mg/m³ for part of one day (ACGIH, 1980). The lowest published lethal dose (LDLo) for human toxicity by inhalation is reported at 10,000 mg/m³ with the toxic effect on the eye and the pulmonary system (NIOSH, 1986).

^{*}Sampling pump was calibrated at a flow rate of 0.2 1/min.

From these results, spraying crews do not appear to be in danger from ethylene glycol vapor or aerosol during spraying. However, the potential for exposure to higher levels still exists, and spraying crews should take precautionary measures when handling, mixing and spraying.

Tables 6 and 7 show the data on water, sediment and soil samples collected under the sprayed bridges. These tables show that ethylene glycol was not detected in any of the samples collected. This could be due to the small volume of compound applied to bridges combined with the high dilution of water in receiving streams or runoff water from rain or melting ice. Table 8 shows the areas of sprayed bridges and rate of application.

TABLE 6

WATER, SEDIMENT AND SOIL SAMPLES COLLECTED UNDER BRIDGES
SPRAYED WITH ETHYLENE GLYCOL ON FEBRUARY 15, 1989

Concentration of Ethylene Glycol (mg/1)						
Location	Water	Sediment	Soil			
Upstream	< 1.0	< 1.0	< 1.0 ***********************************			
Under Bridge	< 1.0	< 1.0	< 1.0			
Downstream	< 1.0	< 1.0	< 1.0			
** i			िस्ता संस्कृति । स्टब्स्ट (१५५८)			
-	< 1.0	< 1.0	** < 1.0 ** me an assure			
Under Bridge	< 1.0	< 1.0	< 1.0			
Downstream	< 1.0	< 1.0	< 1.0			
•	Location Upstream Under Bridge Downstream Upstream Under Bridge	Upstream < 1.0 Under Bridge < 1.0 Downstream < 1.0 Upstream < 1.0 Upstream < 1.0 Upstream < 1.0 Under Bridge < 1.0	Location Water Sediment			

TABLE 7

WATER, SEDIMENT AND SOIL SAMPLES COLLECTED UNDER BRIDGES
SPRAYED WITH ETHYLENE GLYCOL ON FEBRUARY 15, 1989

	Concentration of Ethylene Glycol (mg/l)						
Bridge Name	Location	Water	Sediment	Soil			
Hwy. 61	Upstream Under Bridge	< 1.0	< 1.0 _< 1.0	< 1.0			
	Down Stream	< 1.0	< 1.0	< 1.0			
Joor Rd. Bridge	Upstream Under Bridge	< 1.0	< 1.0 < 1.0	< 1.0			
	Downstream	< 1.0	< 1.0	< 1.0			
Greenwell Springs Rd.	Upstream Under Bridge	< 1.0	< 1.0	< 1.0 < 1.0			
	Downstream	< 1.0	< 1.0	< 1.0			
Joor Rd. Bridge	Under Bridge	< 1.0	< 1.0	< 1.0			
Control							

TABLE 8

BRIDGE DIMENSION AND SPRAYING TIME AND RATE

Bridge Name	Bridge Surface	Application Rate	Total Spraying Time
	(feet)	(gal/min)	(sec)
Hwy. 61	165 X 24	20	34
Joor Rd.	360 X 26	20	52
Greenwell Springs Rd.	300 X 28	20	52
	S. 1.		

ACUTE TOXICITY OF ETHYLENE GLYCOL TO CRAWFISH, BLUEGILL SUNFISH AND SOIL MICROORGANISMS

Constant B. Alter San Co.

Results of the acute toxicity of ethylene glycol to crawfish are found in Table 9 and Figure 2. The 96-hr. LC₅₀ was 91,430 mg/l. The literature cites a 48-hr. and 96-2 hr. LC₅₀ for EG to common shrimp of 100,000 mg/l and 50,000 mg/l, respectively (Blackman, 1974). The 48-hr. LC₅₀ for Daphnia magna is 41,000 mg/l (Gersich, 1986). The crawfish seem to be more resistant to ethylene glycol than species cited in the literature. This high resistance could be related to the difference in the age and species of the tested organisms.

Figure 2. The medial lethal concentration of ethylene glycol to crawfish by probit analysis and line of best fit (EPA probit analysis program Version 1.3)

TABLE 9

EXPERIMENTAL DATA FROM ACUTE TOXICITY TEST OF
ETHYLENE GLYCOL (EG) ON CRAWFISH (PROCAMCARUS SP.)

Concentration of EG by Volume	Number of Test Crawfish	Number of Test Crawfish Death of EG	
		48 hr.	96 hr.
12.6	20	6	20
7.9	20	2	- 7
6.3	20	ī	2
5.0	20	ō	1
3.2	20	Ŏ	ō
0.0	20	Ō	ŏ
LC ₅₀ , %, estimated			
by probit analysis		16.3	8.2
95% confidence limits			; 7 .5
			9.2
Slope of probit line			10.1

The acute toxicity of ethylene glycol to bluegill sunfish is shown in Table 10 and Figure 3. The 96-hr. LC₅₀ for bluegills was 27,540 mg/l. The literature cites a 96-hr. LC₅₀ of 28,000 mg/l for guppies (Koneman, 1981). The 24-hr., 48-hr., and 96-hr. LC₅₀ for fathead minnows were all greater than 10,000 mg/l (Conway et al., 1983). These values compare well with this study.

ibe w**edien le**ttell one lile **(lepense** menoorcal ti

Figure 3. The median lethal concentration of ethylene glycol to blue gills (*Lepomis macrochirus*) by probit analysis and line of best fit

TABLE 10

EXPERIMENTAL DATA FROM ACUTE TOXICITY TEST OF
ETHYLENE GLYCOL (EG) TO BLUEGILL SUNFISH (LEPOMIS MACROCHIRUS)

Concentration of EG % by Volume	No. of Test Bluegills	Number of Test Bluegills Dead at		
		48 hr.	96 hr.	
4.5	20	10	20	
	20	8 6 16 W	17	
2.5	20	3	9	
2.0	20	a_{i} and $\bar{\mathbf{z}}_{i}$ and a_{i}	*6 0	
1.0	20	0 36	Congress to	
U.O 50) 7	20	of the control of the	0	
		. 9s. 1 6st s	a simo to the	
by probit analysis	Orac -		75 / 2:47 / - 3	
95% confidence limits		1 - 0.3:701:1.50	2.2	
ideal that is a second of the	*	7.63	2.7	
16 0.6 G.94		off gively token		
Slope of probit line		500 and 3.9 7.6%	J., \$	
<u> </u>				

The Bauer Assay was used for measuring the toxicity of ethylene glycol to a mixed population of heterotrophic bacteria derived from soil, sediment and activated sludge. Table 11 and Figure 4 indicate that 10%-20% is moderately toxic to the culture based on an activity quotient (AQ) of 0.50 - 0.70. At 30% and above, the toxicity of ethylene glycol is extreme (AQ = < 0.5).

The speed ame insurance of forvis analydes is violated that the state of the state

ina - especial bouleast

23

Figure 4. Toxicity of ethylene glycol to microorganisms based on the Bauer Assay

TABLE 11

BAUER ASSAY: T₅₀ AND ACTIVITY QUOTIENTS FOR MICROBES EXPOSED TO ETHYLENE GLYCOL

		•	0	10	20	30	40	
T ₅₀ 7	t		44.50	64.50	68.90	96.50		
AQ*	*		1.00	0.69	0.65	0.46	≈0.0	
*	T ₅₀		√ ₃		Time (m depletion	uin.) requ n in dissol	ired for ved oxygen.	50
r k	AQ AQ AQ AQ AQ	1.00 0.8-0.94 0.5-0.79 < 0.50		-		trol/T-50 t ity toxic ly toxic		

The toxicity test done on microorganisms by the Alsop Assay measured the inhibition concentration (IC₅₀) that caused a 50% reduction in optical density (Figure 5). Table 12 shows the turbidity (optical density) data as compared to the control for different concentrations of ethylene glycol. The IC₅₀ was found at 10.25% or 114,300 mg/l. This toxicity level to the microorganisms agrees with that found in the literature. The IC₅₀ for activated sludge microorganisms was >10,000 mg/l (Conway et al., 1983). The toxicity threshold for bacteria (Pseudomonas putida) was greater than 100,000 mg/l (Verschueren, 1983).

Figure 5. Toxicity of ethylene glycol to microorganisms based on the Alsop Assay

TABLE 12

TOXICITY OF ETHYLENE GLYCOL (EG) TO SOIL MICROORGANISMS
AS MEASURED BY TURBIDITY (OPTICAL DENSITY)

₹ EG										• .	
(A\A)	0.0	2.5	5.0	7.0	8.0	9.0	10.0	12.0	14.0	16.0	18.0
OD	0.8	8.0	0.75	0.73	0.52	0.44	0.42	0.16	0.08	0.06	0.04
* % of Control	100.0	100.0	93.8	90.6	65.0	54.4	51.9	20.0	9.4	7.5	5.3

* % of Control = Optical density (OD) of test material X 100
OD of control

It can be concluded that the concentration of ethylene glycol used as a deicing agent on bridges, combined with the high volume of water in receiving streams, will dilute ethylene glycol sufficiently to pose no danger to crawfish or to bluegill sunfish. Ethylene glycol at normal application rates (50 μ l of 50% ethylene glycol per square inch) will not exert a toxic effect on bacterial flora. Bacteria in water will degrade the chemical almost completely within 3-4 days (Evans et al., 1974).

BIOACCUMULATION OF ETHYLENE GLYCOL (EG) BY CRAWFISH ORGANS

Figures 6 through 9 for System I (50 μ g/ml EG). System II (200 μ g/ml EG) and System III (100 μ g/ml EG) are the uptake data for ethylene glycol (μ g EG/g tissues) in crawfish gills, muscles, gastrointestinal tract (G.I.) and hepatopancreas (Appendix A, A-11 through A-13). Each data point represents the mean of three measurements taken from three crawfish exposed to the same ethylene glycol concentration during the uptake phase for Systems I, II and III

and the second of the second and the

Figure 6. Average bioconcentration of EG by gills during continuous exposure for 61 days to 50, 200 & 1000 μ g/ml EG

Figure 7. Average bioconcentration of EG by muscles during continuous exposure for 61 days to 50, 200 & 1000 µ g/ml EG

Figure 8. Average bioconcentration of EG by G.I. during continuous exposure for 61 days to 50, 200 & 1000 \mu g/ml EG

Figure 9. Average bioconcentration of EG by hepta. during continuous exposure for 61 days to 50, 200 & 100 \mu g/ml EG

respectively. Means plus standard deviation error bars were used as plotting points.

These figures show that crawfish gills, muscles, gastrointestinal tract (G.I.) and hepatopancreas did not concentrate ethylene glycol to levels above the aqueous concentration to which the animals were exposed. The data show an initial rapid increase in the concentration of ethylene glycol in the first few days, followed by an equilibrium concentration which was then maintained throughout the remainder of the experiment. This was observed in all three systems and in all tissues tested. This could be due to the rapid absorption of ethylene glycol into the body of the crawfish where it is quickly distributed in all the body fluids and tissues. Rapid absorption of ethylene glycol was reported in the literature. Reif et al. (1950) observed rapid absorption of ethylene glycol when ingested by man. Hanzlik et al. (1939) found rapid absorption of ethylene glycol from the gastrointestinal tract of dogs when given small doses of ethylene glycol.

For System I, the steady state of the uptake phase for the gills, muscles, G.I. and hepatopancreas began at 5,4,5 and 4 days respectively; for System II the steady states were at 5,4,6 and 4 days; and for System III the steady states were at 7,5,7 and 5 days respectively. The steady state uptake concentrations (μ g EG/g tissue) in Systems I, II and III for gills were 19,36 and 154, for muscles 29, 53, and 210, for gastrointestinal tract 37,70 and 215 and for hepatopancreas 28, 56 and 140 respectively (see Figures 2 through 5). The order of uptake of ethylene glycol by different tissues of the crawfish were:

System I (50 μ g/ml EG):

- G.I. > Muscles ≈ Hepatopancreas > Gills
- System II (200 μ g/ml EG):
 - G.I. > Muscles ≈ Hepatopancreas > Gills
- System III (1000 μ g/ml EG):
 - G.I. > Muscles > Gills > Hepatopancreas

The order of uptake was the same for Systems I & II but in System

III the order of uptake in gills was higher than the hepatopancreas. This may
be due to the higher concentration of ethylene glycol in the medium and its
relatively greater contact with gill tissue.

There was in increase in the concentration of ethylene glycol in the selected tissues as the ethylene glycol concentration in the medium increased; however, the levels in tissue did not exceed the aqueous concentration of ethylene glycol. This can be seen in the figures describing the uptake phase (Figures 6 through 9).

Table 13 shows the final uptake concentration of ethylene glycol in selected crawfish tissues at the end of 61 days exposure to ethylene glycol in Systems I, II, and III. The uptake of ethylene glycol by the gastrointestinal tract was higher than the other organs in each of the three systems. The high concentration of ethylene glycol in the gastrointestinal tract may be related to the G.I. being the predominant route of elimination of unchanged ethylene glycol. Gessner, et al., (1961) found that the urine is the major route of elimination of unchanged ethylene glycol in humans and dogs reve said particles.

. I complain for some in a contract of the second s

कार है जिल्हा है हरेगा देवां है के उन्हर है

'v gervolfat eelna gasic ...

1. [16] 1. [1]

TABLE 13 CONCENTRATION OF ETHYLENE GLYCOL (μ_g/g) IN SELECTED CRAWFISH TISSUES AT THE END OF A 61 DAY EXPOSURE FOR THE SYSTEMS

Tissue	System I µg/g	System II µg/g	System III μg/g
Gills	19.0	36.0	194.0
Abdominal muscles	22.0	42.0	210.0
Gastrointestinal tract	30.5	70.0	268.0
Hepatopancreas	29.0	55.0	223.0

Uptake by the gills was lowest among the selected tissues in systems I & II and next to lowest among selected tissues system III. The gills have a large surface area and an efficient blood supply. Almost 90% of the water entering a crawfish does so through the gills surfaces (Holdich, 1988). This quick diffusion of ethylene glycol through the gills could explain the low uptake of ethylene glycol by the gills.

LOSS PHASE

Figures 10 through 13 represent the loss or depuration phase in System I, II and III. Each data point (Appendix A, A-14 through A-16) was drawn by plotting the average of three measurements taken from three crawfish during the loss phase for Systems I, II and III respectively. Means plus standard deviation error bars were used as plotting points. These figures represent the depuration of ethylene glycol from crawfish tissues after crawfish were transferred to clean water following ethylene glycol exposure for 61 days.

Figure 10. Depuration of EC by gills during loss phase for 67 days in Systems I. II 6 III 33 . I accorded to a second

Figure 11. Average depuration of EG by muscles during loss phases for 67 days in Systems I, II & III

in System i, II & III & 1 PROJECT OF STATE OF ST

Figure 13. Average depuration of EG by hepta. during loss phase for 67 days in Systems I, II & III

Crawfish were able to clear ethylene glycol within 5 days for animals exposed in System I (50 μ g/ml EG), 6 days for System II (200 μ g/ml EG) and 7 days for System III (1000 μ g/ml EG). The capability of crawfish to completely eliminate ethylene glycol from their system may be due to ethylene glycol's physical properties. It is completely miscible in water and has a low octanol/water partition coefficient (log p = -1.36) and thus is not strongly bound to tissues. Clearance could also be due to an increased tolerance of the hepatopancreas because of the continuous exposure to ethylene glycol and better efficiency in detoxification via enzyme induction.

MATHEMATICAL MODEL

Kinetic models have been developed to predict concentrations, uptake and elimination of chemicals in organisms living in both acutely and chronically contaminated environments.

The classical equation (Oliver, 1985) describing the uptake of chemicals by fish is:

Where:

c - Chemical concentration in fish

m - Chemical concentration in water

k_i - Uptake rate constant

k_o - Elimination rate constant

The units for k_i and k_o are in day -1. Equation 1 can be integrated to yield (Oliver, 1985):

or

Equation 2 represents an open, one-compartment model and can be used in the interpretation of chemical uptake by aquatic organisms. Knowing k_0 , Equation 3 can be linearized by plotting c/m versus $(1 - e^{-k_0 t})$ to yield a straight line with a slope equal to ki/ko.

Data developed in this study were found to fit the equation for the one-compartment model. This was determined by an analysis of variance (ANOVA). The results of this test are shown in Appendix C, C-1 through C-21. Figure 14 is a plot of the one-compartment model (on arithmetic paper) for accumulation of xenobiotic in the medium (Ruzik, 1972).

Figures 10 through 13 show loss of ethylene glycol by crawfish gills, muscles, gastrointestinal tract and hepatopancreas. The loss phase followed a single compartment exponential decay model.

The equation governing the loss is:

$$Ct = C_i * e^{-k_0 t} \dots 4$$

Where:

C_i = initial value.

k_n = elimination rate constant.

C_t = concentration of EG at time t.

t - time in days.

The elimination rate constants, k_0 , were determined for each of the selected tissues and are represent in Table 14. Kinetic parameters (k_i, k_0) and bioconcentration factor (BCF) are presented in Table 14. The bioconcentration factor for the three systems did not exceed 1.

Control of the contro

Concentration of EG in water III, the Extended Concentration of EG in water III desired Total Concentration Concentr

0.16 day Tor hapatopenoreas and 0.26 day to the second

Figure 14. Schematic representation of the mathematical model used for data analysis (Ruzic, 1972); (Anderson, 1988)

TABLE 14 $\begin{array}{c} \text{KINETIC PARAMETERS } (\textbf{K}_i,\textbf{K}_o) \text{ AND} \\ \text{BCF OBTAINED USING MATHEMATICAL MODEL} \end{array}$

System I			
	k; (day-1)	k_o (day ⁻¹)	BCF
Gills	0.18 0.46	0.33	
Muscles	0.35	0.61	0.57
G.I. tract	0.58	0.67	0.86
lepatopancreas	0.24	0.45	0.53
stem II			
	<u>k, (day-1)</u>	k_o (day ⁻¹)	BCF
ills	0.12 0.65	0.18	
uscles	0.13 0.45	0.28	
I.	0.11 0.65	0.17	•
epatopancreas	0.12 0.52	0.24	
stem III			
	k _i (day ⁻¹)	k_o (day-1)	. BCF
lls	0.23 1.33	0.18	
ıscles	0.23 1.18	0.20	
I.	0.22 1.10	0.21	
epatopancreas	0.15 0.96	0.16	

The uptake rate constant (k_i) for System I ranged between 0.18 day of for gills and 0.58 day for gastrointestinal tract. The uptake rate constant for System II ranged between 0.11 day and for System III the k_i ranged between 0.16 day for hepatopancreas and 0.24 day for muscles.

The uptake rate constants (k_i) for the selected tissues in Systems I, II and III were tested statistically using one-way Analysis of Variance. The

variation in the uptake with a p value = 0.30. Also the variation in the uptake rate constants within each selected tissue for Systems I, II and III was not significant (p value = 0.27).

The elimination rate constants (k_0) for System I ranged between 0.46 day ⁻¹ for gills and 0.67 day ⁻¹ for G.I. The k_0 for System II ranged between 0.45 day ⁻¹ for muscles and 0.65 day ⁻¹ for gills. For System III, the k_0 ranged between 0.97 day ⁻¹ for hepatopancreas and 1.33 day ⁻¹ for gills.

The elimination rate constants (k_0) did not show significant differences among the selected tissues for each system p value = 0.67, but the variation within each tissue for three systems was statistically significant with a p value = 0.000. The elimination of ethylene glycol for each selected tissue in System III was almost twice as fast as the selected tissues in Systems I and II (see Table 14).

Martis, et al., (1982) studied the disposition kinetics of ethylene glycol following its intravenous administration to beagle dogs. They estimated the elimination rate constants of ethylene glycol at 35 and 106 mg/kg dosages were 5.76 and 4.18 per day respectively. This rate was slower than the elimination rate for crawfish exposed to 50 μ g/ml and 200 μ /ml ethylene glycol concentrations (see Table 14).

The bioconcentration factors (BCF) [Chemical concentration in crawfish (μ g/g tissue)/chemical concentration in water (μ g/ml)] for System I ranged between 0.33 for gills and 0.86 for G.I. In System II, the k_0 ranged between 0.17 for G.I. and 0.28 for muscles. For System III, the k_0 ranged between 1.16 for hepatopancreas and 0.21 for G.I.

The variation in the bioconcentration factors (BCF) among tissues for each system was a statistically insignificant p-value = 0.31 (Table 14). But the variation within each tissue in the three systems was a significant p

value = 0.07 (Table 14). The bioconcentration factor System I was almost twice
the bioconcentration factor for Systems II and III.

The biological half-life of ethylene glycol in the selected crawfish tissues was determined by:

Table 15 represents the half-life values as determined by Equation 5. The half-life value for Systems I and II were almost the same. They ranged between 1 and 1.5 days. The half-life for System III did not exceed one day for all selected tissues. This is due to the higher rate of elimination of ethylene glycol by the tissues for System III.

TABLE 15

BIOLOGICAL HALF-LIFE (DAYS) OF ETHYLENE GLYCOL IN SELECTED TISSUES OF CRAWFISH FOLLOWING EXPOSURE FOR 61 DAYS TO 50 $\mu_{\rm E}/{\rm ml}$, 200 $\mu_{\rm E}/{\rm ml}$ AND 1000 $\mu_{\rm E}/{\rm ml}$ EG

Tissue	Concent	ration of expo <u>µg/ml EG</u>	sure
	50	. 200	1000
Gills	1.27	1.060.52	
iuscle	1.13	1.530.58	
astrointestinal tract1.03		1.060,63	
Hepatopancreas	1.53	1.320.72	

The variation in half-lives among the selected tissues for Systems IASCA : I, II and III were statistically analyzed using one-way Analysis of Variance. THE FOR MICROSLAL DAGRAGATION OF PERSON THE LINE OF THE The variation was not estatistically significant (p-value - 0.28), but the variation within each tissue for the three systems was statistically significant; Coursel Control is St. 34 Lit. McChesney et al 7 (1971) found that the plasma half-life of ethylene glycol in a study done on monkeys was 227 to 317 hours to Human plasma clearance halflives of ethylene glycol following oral intoxication range from 2: to: 6 hours: (Reif, 1950; Winek, 1975; Peterson, et al. 1981). These half-lives are shorter than the half-lives of ethylene glycok in the crawfish tisaues wigges to accorde s on Therefore Addition description alteration and challend and Additional and the consistence of the consis Contract to the second POTENTIAL HEALTH EFFECTS ON MAN people additionals are a straight off . 20 thbargoborned The ultimate importance of bioaccumulation of ethylenetglycol in crawfish is the possible health effects on man following consumption of 3 contaminated crawfish. The lethal dosewof ethylene glycol for an average CUMULATIVE FICO, LEVELS GENERATED FROM THE BIODECKADATION OF individual weighing 70-kg is 100 ml of ethylene glycol (Gessner et al. ; 1961) This study found that the maximum concentrations of ethylene glycol in edible crawfish tissues were 331 \mug/g for the abdominal muscle and 278 \mug/g for (kg/1) dark (pg/1) (pg/1) $\text{Light}(\mu_S/1)$ hepatopancreas Because the average crawfish contains approximately 2 g of hepatopancreas and 40 goof abdominal muscle, the combined amount of ethylene 20.8 99.3 90.0 glycol present in edible tissue is approximately 1.8 mg EG/crawfish. To reach 7.59 9,96 the acute lathal dose of 115 g of athylene glycol one would have to consume 28.82 01.18 38.0 0.35 63,900 contaminated crawfish (or 384 kg of crawfish edible tissues) at one time. 33.98 €0,5€ 99.3 **22.0**, 3.8 包含**34.6** 20.55 This scenario was developed considering the worst possible conditions; that is: 38.33 37.26 34.42 104 675 675 675 675 675 675 675 677 that the crawfish are continuously in direct contact with a high concentration of ethylene glycol (1000 mg/1). The half live half live

BIODEGRADATION

Table 16 shows the cumulative average ¹⁴CO₂ level generated from three concentrations of ethylene glycol and ¹⁴CO₂ values in the two controls. There was no apparent difference in biodegradation pattern at the three concentrations. However, a toxic effect could be observed with increasing concentration. Rapid degradation was observed for the first 72 hours. Table 17 shows the slope values for both the growth phase and stationary phase at all three concentrations. The slope, or the rate of degradation, in the growth phase decreases with an increase of concentration, indicating inhibitory or toxic effects of ethylene glycol on the microorganisms as depicted in Figure 15. There was no difference between the controls (dark and light), indicating no photodegradation. The figure also shows the sharp increase in CO₂ production for the first 72 hours, indicating a high rate of biodegradation of the ethylene glycol.

TABLE 16 CUMULATIVE $^{14}\text{CO}_2$ LEVELS GENERATED FROM THE BIODEGRADATION OF ETHYLENE GLYCOL TEST RUN (EG) (CUMULATIVE AVERAGE IN $\mu_\text{g}/1$)

Time (hr)	Control light(μg/l)	Control	1% EG	3% EG	5% EG
(111)	IIgnc(µg/I)	dark (μg/l)) (µg/ 1)	(μg/1)	(μg/1)
2	0.03	0.05	2.80	2.32	1.99
4	0.09	0.09	3.99	3.19	2.75
6	0.09	0.09	5.19	4.07	3.32
12			9.96	7.59	5.46
24	0.23	0.21	20.10	16.13	9.25
48	0.35	0.36	31.10	29.85	22.98
72	0.43	0.46	34.83	33.89	29.31
96	0.43	0.55	6.60	36.09	31.98
120	0.46	0.64	37.51	37.08	33.42
144	0.59	0.77	38.31	37.26	34.42
168	0.71	0.88	38.91	37.85	34.73
240	0.99	1.14	41.58	39.02	35.54
360	1.31	1.59	44.03	41.41	36.71

TABLE 17

RATE DATA FOR MICROBIAL DEGRADATION OF ETHYLENE GLYCOL (EG)

Alabera of the engagement of the property of the proper

	Control	Control	1% EG	3% EG	. a course of the same 5% EG «Fawn by a wee
		N.O. 86	్ ్రాజ్ కించి	d and Joan Po	est de la company de la co
Growth Phase		· · · · · · · · · · · · · · · · · · ·	en e	cond) vecs s	Andrew Alley Comment
k,μgl ⁻¹ h ⁻¹ half-life,h r	120	0.0059 117 0.982	1.4	0.414s see 1.4 0.982	1.7 0.994
k,μgi h half-life,h	. 01.0033 - ⇔ - 210	0.0039 178	0.031 (s) 22.434.7	ा 0.020 <i>ा वर्षा</i> - 33.0	0.021 com and is
And the second s	 				to be and the same.
1					ion were isolated
and identific	ed as Gran	negative;	rod- shaped	bacteria,	belonging ato the
1					an allow that the
1					ly found in the
	والمتلاف والمداري المساول الرائج والرسويين	January Guman in January	e and an experience of the second	erina ar misa denti fotoposti, notrmasata	level over 3 days, /h(for 1% and) 3%
		rations high		nd to exert in	nhibitory or toxic
	In the res	ults report	ed here (see	e Table 4)	first-order rate
					$ds_{\perp}tg_{\perp}cb_{\perp}tain$ the stermined from $T_{1/2}$

47

-0.693/k.

Figure 15. Cumulative average of ¹⁴CO₂of three triplicate concentrations of ethylene glycol

Table 18 shows the adsorption/desorption capacities of ethylene glycol to montmorillonite (a three dimensional clay) and to soils collected from four different locations in Louisiana. Soils were characterized by a local engineering laboratory. Two were clay, (Joor Road and Joor Road Control) while the other two (Highway 61 and Greenwell Springs Road) were sandy clay. Total organic carbon was also measured for all collected soils and is given in the table.

1 1 1 1

The percent adsorption ranged from 0-0.5% for all tested soils of the percent adsorption ranged from 0-0.5% for all tested soils of the percent adsorption and the 4-hour experiment for the soils of the percent and the montmorillonite. Due to the high water solubility and the low vapor of the pressure of ethylene glycologic rapidly partitions to water in the environment.

[6] [0.0]

Alexandres a last the second of the control of the control of the second of the second of the control of the co

The constant of the second of

TABLE 18
ETHYLENE GLYCOL SORPTION STUDY DATA

Soil Soil sample type location	Toc mg/kg	Cone mg/l	Adsorption µg/g y.	Desorption µg/g y.
Hwy. 61 sand/clay	1310	1	0.05 0.50	0.05 100
, ,		5	0.06 0.12	0.05 100
		10	0.03 0.03	0.03 100
		50	0.03 0.01	0.03 100
		100	0.03 0.01	0.03 100
reenwell sand/clay	1440	1	0.02 0.20	0.02 100
Springs Rd.		5	0.02 0.04	0.02 100
		10	0.02 0.02	0.02 100
		50	0.03 0.01	0.02 67
		100	0.03 [0.00	0.00
oor Road clay	1600	1	0.01 0.10	0.01 100
•		5	0.01 0.20	0.01 100
		10	0.03 0.03	0.01 33
		50	0.03 0.01	0.02 67
		100	0.03 0.003	0.013 43
onmorillinite clay		1	0.05 0.5	0.05 100
		5	0.06 0.12	0.05 83
		10	0.03 0.03	0.05 100
		50	0.03 0.01	0.03 100
· · · · · · · · · · · · · · · · · · ·		100	0.03 0.01	0.03 100
oor Road				
ontrol clay	3240	1	0.01 [0.1	0.01 100
vaay	J270	5	0.01 0.02	0.01 100
		10	0.03 0.03	0.01 33
		50	0.03 0.006	0.02 67
		100	0.03 0.003	0.02 67

マール かうさ こうだい さ まずいば 15年22年9日 15日 日 - 日本10年8日 18年 17月 17日

- The highest concentrations of ethylene glycol aerosol (2:33 mg/m³) and vapor (3.37 mg/m³) found in the breathing zone of workers in this study were below the ACGIH recommended levels of 10 mg/m³ and 125 mg/m³; respectively. However, care should be taken while spraying due to aerosolization of ethylene glycol caused by the spraying rig.

自己在全国的情况,可是特殊的现在分别的,所谓《自然的》,是可谓自身主题,并是这一种是可以重要的的是使**是的的**是使用的重要的可以是《自由的主义中的的主义中的》。

- The 96-hour LC₅₀ of ethylene glycol for crawfish and bluegill sunfish were 91,430 mg/l and 27,540 mg/l, respectively. The average toxic end point (IC₅₀) for a mixed population of soil microorganisms was 114,300 mg/l. The concentration of ethylene glycol used as a deicing agent on bridges combined with rain, melting ice and water in the receiving stream will dilute ethylene glycol sufficiently to pose no danger to crawfish or to bluegills.

 Ethylene glycol at normal DOTD application rates will not exert a toxic effect on bacterial flora.
- 4) Bioaccumulation by crawfish tissue was found to be dependent upon the concentration of ethylene glycol in the water. Ethylene glycol levels in crawfish tissues in all cases did not exceed the EG water concentration to which crawfish were exposed.

The crawfish were capable of completely depurating ethylene glycol from their system within a maximum period of 6 days at the highest

concentration (0.1%) used in this study. The half-lives of ethylene glycol in the selected tissues ranged between 0.52-1.53 a day.

Crawfish bioconcentrated minimal amounts of ethylene glycol following exposure to 50 μ g/ml, 200 μ g/ml and 1000 μ g/ml ethylene glycol for 61 days. The maximum levels of EG found in crawfish edible tissue (abdominal muscle < 210 μ /g, hepatopancreas < 140 μ /g) do not pose an acute health effect to humans. One would have to consume 384 kg of ethylene glycol contaminated edible crawfish tissues at one time to result in acute toxicity.

- 5) Common soil or water microorganisms found in the environment will biodegrade ethylene glycol significantly in the first 3 days of exposure. The rate of biodegradation for the first 3 days is 0.5 μg/l/h for 1% and 3% ethylene glycol concentrations. However, concentrations of ethylene glycol higher than 5% will begin to exert inhibitory or toxic effects. The microorganisms responsible for this degradation were isolated and identified as Gram negative, rod-shaped bacteria, belonging to the Pseudomonas, Serratia, and Citrobacter species.
- 6) Due to the high solubility of ethylene glycol in water, adsorption to tested soils (Louisiana clay, clay/sand and laboratory clay/soil) was negligible.

RECOMMENDATIONS

- 1) In this study, ethylene glycol was detected in the air inside the spraying truck at low levels. Although the concentration was much below the ACGIH recommended level, precautions should be taken. All applicators should stay inside the cab and windows should be kept closed.
- 2) Although there are few reports of adverse effects from direct contact with the skin, care should be taken to protect the hands by wearing gloves during handling of concentrated ethylene glycol.
- 3) It is advisable to stand upwind of the prevailing wind direction when mixing ethylene glycol to avoid aerosol inhalation. Spraying rigs could be modified (if possible) so the nozzles are at the back of the truck.
- 4) Results of ethylene glycol testing on crawfish and bluegills showed low acute toxicity; however, this does not preclude toxicity to other aquatic species. Therefore, spills and direct application of ethylene glycol to water should be avoided.
- 5) Acute studies on juvenile crawfish and other aquatic species could be done to determine potential acute effects to more sensitive stages of the organisms.

REFERENCES

- Alsop, G.M., Waggy, G.T. and & Conway, R.A. 1980. <u>Bacterial Growth Inhibition Test</u>. Journal of Water Pollution Control Federation 52 (10), 2452-2456.
- Bauer, N.J., Seidler, R.F. and Knittel, M.D. 1981. "A Simple Rapid Bioassay for Detecting Effects of Pollutants on Bacteria." Bulletin of Environmental Contamination and Toxicology 27, 577-582.
- Bachmann, E. and Goldberg, L. 1971. "Reappraisal of the Toxicology of Ethylene Glycol. III Mitochondrial Effects." Food and Cosmetics Toxicology, 9:39-55.
- Beasley, V.R. and Buck, W.B. 1980. "Acute Ethylene Glycol Toxicosis: A Review." Veterinary and Human Toxicology, 22(4):255-263.
- Bedard, R.G. 1976. "Biodegradability of Organic Components." NTIS PB- 264-707, pp 84.
- Berman, L.B., Schreiner, G.E. and Feys, J. 1957. "The Nephrotic Toxic Lesion of Ethylene Glycol." Ann Int Med 46:611-619.
- Blackman, R.A. 1974. "Toxicity of Oil Sinking Agents." Mar. Poll. Bull, 5:116-118.
- Bringmann, G. and Kuhn, R. 1980. "Comparison of the Toxicity Thresholds of Water Pollutants to Bacteria, Algae, and Protozoa in the Cell Multiplication Inhibition Test." Water Research, 14:231-241.
- Clay, K.L. and Murphy, R.C. 1977. "On the Metabolic Acidosis of Ethylene Glycol Intoxication." Toxicol. Appl. Pharmacol, 39:39-49.
- Conway, R.A., Waggy, G. T., Spiegel, M. H. and Berglund, R.L. 1983. "Environmental Fate and Effects of Ethylene Oxide." Environmental Sciences and Technology 17(2), 107-112.
- Dawson, T.A. 1976. "Ethylene Glycol Sensitivity." Contact Dermatitis, 2(4):233.
- Dubeikovska, L.S., Asanove, T.P., Rozina, G.Y., Budanova, L.F., Zenkevich, E.S., Revnova, N.V. and Gorn, L.E. 1973. "Hygienic Significance of Ethylene Glycol in the Manufacture of Some Radio Components." Gig. Truda i. Prof. Zabol., 10:1-4.
- Evans, W.H. and David, E.J. 1974. "Biodegradation of Mono-, Di-, and Triethylene Glycols in River Waters Under Controlled Laboratory Conditions." Water Res., 8(2):97-100.
- Gersich, F.M. 1986. "The Precision of Daphnid (Daphnid magna straus-, 1820) Static Acute Toxicity Tests." Arch. Environ. Contam. Toxicol. 15, 741.
- Gessner, P.K., Parke, D.V. and Williams, R.T. 1961. "Studies in Detoxication 86 the Metabolism of ¹⁴C Labelled Ethylene Glycol." Biochem. J., 79:482-489.

Goodman, L. and Gilman, A. 1980. The Pharmacological Basis of Therapeutics. Macmillan Publishing Co. N. Y., 6th ed., p. 1646.

Grant, W. 1974. <u>Toxicology of the Eye: Drugs. Chemicals. Plants. Venoms.</u> Springfield IL, Thomas Co., 2nd ed., p. 476.

Hanzlik, P.J., Seidenfeld, M.A. and Johnson, C.C. 1931. "General Properties, Irritant and Toxic Actions of Ethylene Glycol." J. Pharmacol. Exptl. Therap., 41:387-406.

Holdich, D.M. 1988. Freshwater Crayfish: Biology. Management and Exploitation. Portland OR.

Jank, B.E., Guo, H.M. and Cairns, V.W. 1974. "Activated Sludge Treatment of Airport Wastewater Containing De-icing Fluids." Water Res., 8:875-880.

Kepper, K. 1989. Louisiana Department of Transportation and Development. Personal communication.

King, J.S. Jr. and Wainer, A. "Glyoxylate Metabolism in Normal and Stone Forming Humans and the Effect of Allopurinol Therapy." (3321-9).

Koneman, H. 1981. "Quantitative Structure Activity Relationships in Fish Toxicity Studies, Part 1;, Relationship for 50 Industrial Pollutants." Toxicology, 19(3). 209-221.

Marshall, T.C. and Cheng, Y.S. 1983. "Deposition and Fate of Inhaled Ethylene Glycol Vapor and Condensation Aerosol in the Rat. Fund." Appl. Toxicol., 3:175-181.

Martis, L., Kroes, R., Darby, T.D. and Woods, E.F. 1982. "Disposition Kinetics of Ethylene Oxide, Ethylene Glycol and 2-Chlorethanol in the Dog." J. Toxicol. Environ. Hlth., 10:847-856.

McChesney, E.W., Goldberg, L., Parekh, C.K., Russel, J.C. and Min, B.H. 1971. "Reappraisal of Toxicology of Ethylene Glycol. II. Metabolism Studies in Laboratory Animals." Food Cosmet. Toxicol., 9:21-38.

McChesney, E.W., Goldberg, L. and Harris, E.S. 1972. "Reappraisal of the Toxicology of Ethylene Glycol. IV. The Metabolism of Labelled Glycolic and Glyoxylic Acids in the Rhesus Monkey." Food Cosmet. Toxicol., 10:655-670.

Merck Index. 1983. Rahway, N. J., U. S. A. Merk and Co. Inc., 10th ed., pp. 550.

Miller, L.M. 1979. <u>Investigation of Selected Potential Environmental Contaminants: Ethylene Glycol. Propylene Glycols and Butylene Glycols.</u> Prepared for EPA NTIS PB 80 109119.

NIOSH National Institute for Occupational Safety and Health. Registry of Toxic Effects of Chemical Substances (RETCS) on line file, current file 86/8512.

NIOSH. 1977. NIOSH Method No P&CAM 338. Ethylene Glycol. In NIOSH Manual of Analytical Methods, 2nd ed., Vol. 1, Cincinnati, Ohio. DHEW (NIOSH) publ. No. 77-157-4.

Parry, M.F. and Wallach, R. 1974. "Ethylene Glycol Poisoning." Amer. J. Med., 57:143-150.

Peterson, C.C., Collins, A.J., Hines, J.M., Bullock, M.L. and Keane, W.F. 1981. "Ethylene Glycol Poisoning. Pharmacokinetics During Therapy with Ethanol and Hemodialysis." N. Engl. J. Med., 304:21-23.

Reif, G. 1950. "Selbstveruche mit Athylen Glycol." Pharmazie., 5:2-76-278.

Ruzik, I. 1972. "Two Compartment Model of Radionuclide Accumulation into Marine Organisms." Mar-Biol., 15:105-112.

<u>Standard Methods for the Examination of Water and Wastewater</u>. 1985. American Public Health Association, American Water Works Association, Water Pollution Control Federation, 16th ed.

Terlinsky, A.S. 1980. "Monohydrate Calcium Oxalate Crystalluria in Ethylene Glycol Poisoning." New England J. Med., 302:922.

Troisi, F.M. 1950. "Chronic Intoxication by Ethylene Glycol Vapor." Brit. J. Industry. Med., 7:65-69.

United States International Trade Commission. 1984. <u>Synthetic Organic Chemicals: United States Production and Sales</u>. United States Government Printing Office, Washington, D.C. USITC Publication No. 1183.

Verschueren, K. 1983. <u>Handbook of Environmental Data on Organic Chemicals</u>. Van Nostrand Reinhold Company, NY, 646-647.

Winek, C.L. 1975. "Ethylene Glycol Poisoning. Letter to the Editor." New England J. Med., 292:928-929.

APPENDICES

	Pag
Appendix A	58
Uptake and loss data	
Water parameter data	
Annual tra	
Appendix B	80
Monitoring water parameters	
Ethylene glycol standards	
Appendix C	91
Statistical analysis for data fitting	
Effect of crawfish sex and body weight	
Statistical analysis for kinetic rates, BCF and half lives	

APPENDIX A

Water parameters data: ethylene glycol concentration in water, pH, dissolved oxygen alkalinity and temperature during uptake and loss phases of the study.

Uptake and loss data for individual crawfish tissue.

d.2

.5 2**8**

...

 $\mathcal{E}_{V^{*}} \in \mathcal{E}$

TABLE A-1
DISSOLVED OXYGEN DATA FOR THE ACUTE TOXICITY
OF ETHYLENE GLYCOL (EG) ON CRAWFISH
(Procambarus sp.) GROUP 1 & 2

Concentration of EG	D.O. (mg/l) at								
% by Volume	0 hr.	24 hr.	48 hr.	72 hr.	96 hr				
GROUP 1:					<u> </u>				
12.6	8.6	5.3	5.5	5.0	5.0				
7.9	8.5	4.5	3.5	3.5	3.0				
6.3	8.5	5.0	4.5	3.5	3.0				
5.0	8.4	4.2	4.0	3.2	3.2				
3.2	8.4	5.5	4.2	3.0	3.0				
0.0	8.3	5.0	4.4	4.0	3.0				
ROUP 2:				•					
2.6	8.9	5.4	5.0	4.3	3.9				
7.9	8.7	5.0	4.2	3.5	3.2				
6.3	8.7	4.6	4.0	3.3	3.1				
5.0	8.6	5.5	4.6	4.0	3.5				
3.2	8.6	5.4	4.8	4.2	3.6				
0.0	8.6	5.2	4.3	3.0	3.0				

TABLE A-2

ph data for the acute toxicity test of ethylene glycol

(EG) ON CRAWFISH (Procambarus sp.) GROUP 1 & 2

Concentration	pH (s.u.) at							
of EG % by Volume	0 hr.	24 hr.	48 hr.	72 hr.	96 hr			
GROUP 1:								
12.6	7.9	6.9	6.9	7.0	7.1			
7.9	7.8	6.9	6.9	6.8	6.8			
6.3	7.8	7.0	6.9	6.8	6.8			
5.0	7.8	7.0	6.9	6.8	6.7			
3.2	7.7	6.9	6.7	6.7	6.7			
0.0	7.7	6.8	6.7	6.7	6.7			
GROUP 2:		·						
12.6	7.8	6.9	6.9	7.0	7.0			
7.9	7.8	7.0	7.0	6.9	6.9			
6.3	7.8	7.1	7.1	6.9	7.0			
5.0	7.8	6.9	6.9	6.9	7.0			
3.2	7.7	7.1	7.0	6.9	7.0			
0.0	7.7	7.3	7.1	7.0	7.0			

TABLE A-3
WATER TEMPERATURE DATA FOR THE ACUTE TOXICITY TEST OF ETHYLENE GLYCOL (EG) ON CRAWFISH IN GROUP 1 & 2

Concentration of EG		Temperature	in Degrees	Centigrade	e at
% by Volume	0 hr.	24 hr.	48 hr.	72 hr.	96 hr
GROUP 1:					
12.6	23.0	20.5	21.5	21.0	22.0
7.9	23.0	20.5	21.5	21.0	22.0
6.3	23.0	21.0	21.5	21.0	22.0
5.0	22.0	21.0	21.5	21.0	22.0
3.2	22.0	21.0	21.5	21.0	21.5
0.0	22.0	20.5	21.5	21.0	22.0
GROUP 2:					
12.6	23.5	20.0	20.5	22.0	22.0
7.9	23.0	20.5	20.5	20.5	21.5
6.3	23.0	20.0	20.5	20.5	21.5
5.0	22.0	20.5	20.5	20.5	20.5
3.2	22.0	20.0	20.5	21.0	21.5
0.0	22.0	20.0	20.5	21.0	21.5

TABLE A-4
WATER QUALITY FOR THE DILUTION WATER USED IN THE TOXICITY
TEST OF ETHYLENE GLYCOL ON CRAWFISH (Procambarus sp.)

Value	
7.9 s.u.	
$47 \text{ mg/1 as } \text{CaCO}_3$	
0.0 mg/l	
270 mg/l as $CaCO_3$	
8.5 mg/l	
0.0 mg/l	
8.0 mg/l	

TABLE A-5

CONCENTRATION OF ETHYLENE GLYCOL (EG) IN THE TEST CHAMBERS

OF THE ACUTE TOXICITY TEST RUN ON CRAWFISH GROUP 1 & 2ª

Concentration of EG	Concentra	tion of EG in	n mg/l (dilu	ition factor	100 X)
% by Volume	0 hr. 24 hr. 48 hr. 72 hr		72 hr.	96 hr.	
GROUP 1:					
12.6	1366.97	1182.30			1170.00
7.9	848.99	749.20	• **	wa ee	747.00
6.3	570.37	561.25			559.00
5.0	470.09	445.84			434.00
3.2	301.28	297.63			295.00
0.0 GROUP 2:	0.0				0.0
12.6	1264.22				1168.00
7.9	771.56				781.84
6.3	612.84		± 4		615.93
5.0	493.03			·	492.21
3.2	310.92			-	289.43
0.0	0.0				0.0
STANDARD	1090.00	1064.00			1097.00

^a Ethylene glycol was measured by Gas Chromatography

TABLE A-6
WATER QUALITY FOR THE DILUTION WATER USED IN THE
TOXICITY TEST OF ETHYLENE GLYCOL (EG) ON BLUE GILLS
(Lepomis macrochirus) GROUP 1 & 2

 Parameter Tested	Value		
рН	7.5		
•	7.5 s.u.		
Alkalinity	65 mg/l as CaCO ₃		
Total Residual Chlorine	0.0 mg/l		
Total Hardness	255 mg/l as CaCO ₃		
Dissolved Oxygen	8.6 mg/l		
Ammonia Nitrogen	0.0 mg/l		
Chemical Oxygen Demand (COD)	6.5 mg/l		

TABLE A-7
DISSOLVED OXYGEN DATA FOR THE ACUTE TOXICITY OF
ETHYLENE GLYCOL (EG) ON BLUE GILLS
(Lepomis macrochirus) GROUP 1 & 2

Concentration of EG	D.O. (mg/l) at							
% by Volume	0 hr.	24 hr.	48 hr.	72 hr.	96 hr.			
GROUP 1:								
4.5	8.5	6.8	5.0	5.0	4.8			
3.5	8.4	7.8	6.4	6.0	5.6			
2.5	8.4	7.5	5.5	5.0	5.0			
2.0	8.4	6.8	6.0	5.5	5.2			
1.0	8.4	7.4	6.4	5.2	5.0			
0.0	8.4	7.7	7.6	7.6	7.6			
GROUP 2:								
4.5	8.3	7.0	6.2	5.8	5.0			
3.5	8.4	6.6	6.0	5.4	5.0			
2.5	8.3	6.6	5.8	5.0	4.8			
2.0	8.3	7.0	6.0	5.5	5.3			
1.0	8.3	6.9	6.5	5.7	5.2			
0.0	8.4	7.8	7.4	7.3	7.6			

TABLE A-8

PH DATA FOR THE ACUTE TOXICITY TEST OF
ETHYLENE GYLCOL (EG) ON BLUE GILLS
(Lepomis macrochirus) GROUP 1 & 2

Concentration of EG	pH (s.u.) at						
% by Volume	0 hr.	24 hr.	48 hr.	72 hr.	96 hr.		
GROUP 1:							
4.5	7.6	6.5	6.5	6.6	6.7		
3.5	7.5	6.5	6.5	6.3	6.4		
2.5	7.5	6.6	6.5	6.4	6.4		
2.0	7.4	6.6	6.5	6.4	6.4		
1.0	7.4	6.5	6.3	6.3	6.3		
0.0	7.4	6.4	6.4	6.4	6.5		
GROUP 2:							
4.5	7.8	6.5	6.4	6.6	6.7		
3.5	7.6	6.5	6.5	6.4	6.4		
2.5	7.6	6.6	6.5	6.5	6.4		
2.0	7.5	6.5	6.4	6.5	6.5		
1.0	7.4	6.6	6.4	6.3	6.3		
0.0	7.4	6.4	6.5	6.5	6.5		

TABLE A-9
WATER TEMPERATURE DATA FOR THE ACUTE TOXICITY TEST OF
ETHYLENE GYLCOL (EG) ON BLUE GILLS
(Lepomis macrochirus) GROUP 1 & 2

Concentration		Temperature	in Degrees	Centigrade	e at
of EG % by Volume	0 hr.	24 hr.	48 hr.	72 hr.	96 hr.
GROUP 1:					
4.5	21.0	20.0	20.5	20.0	21.0
3.5	21.0	20.0	20.5	20.0	21.0
2.5	21.0	20.5	20.5	20.0	21.0
2.0	20.5	20.0	20.5	20.5	20.5
1.0	21.0	21.0	20.5	20.5	21.0
0.0	21.0	20.0	20.5	20.0	21.0
GROUP 2:					
4.5	21.0	20.5	20.5	20.5	21.0
3.5	21.0	20.5	20.5	21.0	21.0
2.5	21.0	21.0	21.0	20.5	20.5
2.0	20.5	20.5	20.5	21.0	21.0
1.0	21.0	20.5	20.5	21.0	21.0
0.0	21.0	20.5	20.5	20.5	21.0

TABLE A-10 CONCENTRATION OF ETHYLENE GLYCOL (EG) IN THE TEST CHAMBERS OF THE ACUTE TOXICITY TEST RUN ON BLUE GILLS (Lepomis macrochirus) GROUP 1 & 2

Concentration	43	entration of E	G in mg/l (di	lution factor	100 X)
of EG % by Volume	0 hr	ξ. ξ	48 hr.	72 hr.	96 hr.
GROUP 1:					
4.5	470.	30		• •	441.80
3.5	340.	46		••	330.00
2.5	279.	53			270.65
2.0	193.			•-	190.95
1.0	110.	31 (2) 00 31		••	101.54
0.0	0.	00	· · · · · · · · · · · · · · · · · · ·	-	0.00
GROUP 2:				4	
4.5	452.	40	•• •		
3.5	339.	62	••		340.90
2.5	246.	78		•-	248.40
2.0	196.	00'	••	<u>.</u>	186.27
1.0	93.	29		.	95.98
0.0	0.	0			. 0.00 € 0.00
	* · · · · · · · · · · · · · · · · · · ·	,			3 S
					#
	e R			*.	() () () () () () () () () ()
			e to	£	
ř.,	€. (\$*)				
	W.		7 - 1 - 2 2 - 194	34 × 3 × 4 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5	
. ,	±1 · 11	4	, 1, £\$.	15	·
20	• .	· .		/ # - ** - \$	

TABLE A-11 UPTAKE DATA FOR INDIVIDUAL CRAWFISH ORGANS FOR SYSTEM I (50 μ g/ml EG)

Time Day	Animal No.	Sex	Gills	Muscles	G.I.	Hepta.
0	1	M	0.0	0.0	0.0	0.0
Ö	2	M	0.0	0.0	0.0	0.0
ŏ	3	F	0.0	0.0	0.0	0.0
		**				
1	1	M	6.4	13.8	13.4	8.8
1	2	F	4.0	7.4	21.5	9.6
1	3	F	14.5	6.3	17.3	7.0
2	1	F	12.0	20.0	20.0	9.5
2	2	F	9.2	12.1	16.0	9.2
2	3	F	11.4	10.9	14.3	7.3
3	1	M	10.1	24.0	20.0	27.8
3	2	M	9.0	30.0	19.0	33.5
3	3	F	8.0	20.0	14.0	21.6
•	•	•	0.0	20.0	14.0	21.0
4	1	F	8.7	20.0	28.0	24.0
4	2	F	12.5	30.0	38.0	26.5
4	3	F	16.4	34.0	29.0	32.8
5	1	M	13.0	21.6	26.9	28.2
5	2	M	11.8	33.2	35.1	33.7
5	3	F	15.9	26.5	30.1	25.9
6	1	F	15.6	23.4	29.6	36.7
6	2	F	18.9	25.7	32.8	28.6
6	3	M	17.0	31.2	38.9	40.0
8	1	F	14.6	20.0	21 0	27 0
8				28.9	31.0	37.2
8	2 3	M	20.2	25.2	41.3	19.2
0	J	M	11.1	19.1	35.8	9.9
10	1	F	11.5	34.2	29.2	35.1
10	2	M	17.3	28.0	32.9	29.2
10	3	F	16.0	24.3	40.3	24.3
12	1	F	19.2	27.1	43.2	25.3
12	2	F	17.0	21.3	31.7	20.7
12	3	M	12.9	32.0	38.6	28.9
14	1	F	18.2	35.7	38.2	25.6
14	2 .	M	12.8	27.1	42.1	30.7
14	3	F	21.4	31.9	32.3	33.5
	J	¥.	44.7	32.3	32.3	<u> </u>
16	1	M	13.1	32.4	35.3	28.3
16	2	F	17.1	29.2	38.1	30.2
16	3	M	20.2	24.0	30.6	24.4
19	1	M	23.1	30.6	41.2	39.1
19	2	M	17.8	38.1	33.8	31.5
19	2 3	F	14.3	25.1	35.7	28.5
					-	

			TABLE	A-11 (conti	nued)			
Time Day	Anima No.	1 Sex	G111s	Muscles	G.I.	Hepta.		
22	1							
22	2	M F	10.0	74.8	48.0	34.7		
22	3	r M	16.0 14.0	84.5	85.3	18.1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	-: :
	J	п	14.0 - G	32.1	28.0	28.4	. *	7 ta)
26	1	M	18.2	25.4	26.3	100		
26	2	M.	14.9	19.7	30.0	10.6		
26	3	M	13.6	58.9	54.4	20.2 · 18.9		
		•	or OC da		34.4	10.9		
29	1	F.	14.0000	22.7	20.0	19.0	,	
29	2	F	9.0% 111	32.3	26.0	22.0		
29	3	M	12.0	46.2	30.0	30.0	•	
	_	ı		423.10				
36	1	M	14.0%	32.0 😘 👵	23.6	26.0		
36	2	F	16.0% ବର	26.0	78.0	16.5	·	
36	3	М	13.0	20.5	38.0	28.5		
45	1		*	54 Opt 1		₽\$ [‡]		
45 45	1 2	W	11.9 de	20.40.6	43.2	22.9		
45	3	F/	14.30/21	15:70.Ti	30.3	32.9		
43	,	M	11.7 (1) ast	18.6	27.6	11.4		
47	1	M **	23.1	60,000 a		# · ·	•	1
47	2	F	11.4	12:90818 7:70088	130.0	21.7	Ş	
47	3	M	9.0	9.4	45.7°	21.4	, i	
		v (†	48.004	1468604	71.1 33.235	34.0		
49	1	F	9.6	34.33549	31.2	9.1		
49	2	i M .v	7.2	11.480a8	18.20	30.6		
49	3	F	8.4	18.9	67.7	12.7	•	
		1.18	T	651804	270700		į	3
51	1	P	23.5	22:4 (Gas	32.40	28.0	,	à
51	2	F	28. 2	13.6%	30.7% si	13.3	;	, i
51	3	M	21.0	18.6	34.0	32.0		
53	1			76895	\$5 3 (9.00)	4 / 3	1	ş
5 3	2	F	20.8	22.09/88	26.03√€.	12.2		3
53	3 .	M : F	31.5	18.63 1 3	24.0% %S (26.7	**	3
	3	, F	19.7	16.3 ଅଞ୍ଚଳଧ୍ୟ	32.5	23.5		
55	1	F	26.9	53.0% %	31470	450		91
55	2	P	41.9	27.15 GE	125.5 5 50.80	25.4		94
55	3	F	32.9	32.7	56.6	25.4	• .	ा
		,			1805	50.8	1	13 f
57	1	M	16.1	15.7	19.8	8.8	Š	1.2 1.1
57	2	K e	12.1	20.1	21.4	17.4	* **	5.5 \$1
57	3	M	10.3	18.2	23.2	13.0	'•	
		• %.		t_{s}			ſ	à.,
59	1	P	14.5	13.5	23.33.65	8.7	\$	2
59	2	· M	17.0	17.8	24.9	25.7	F	ΔĴ
59	3	F	25.3	24.6	21.7	34.2		
61	•	ે. 3ે€	9 ₁ ,	4.5	1. S. J.	M-\$5, i	1	rŽ.
61 61	1	2 p 2	25.7	24.0	36.2	20.1	2	\
61	2		23.3	17.5	30.3%	30.9	f,	1
OT	3		12.3 8 38	30.6	24.9	38.5		
		1.68			1.38	<u> </u>	1	
		9.08	A A		3. 44 3. 4 8	M	.*	₩.
			•	AF VICTOR	à. ₹ %	M		5

TABLE A-12 UPTAKE DATA FOR INDIVIDUAL CRAWFISH ORGANS FOR SYSTEM II (200 μ_{g}/ml EG)

				· · · · · · · · · · · · · · · · · · ·			
Time	Animal	Sex	Gills	Muscles	G.I.	Hepta.	
Day	No.						
0	1	M	0.0	0.0	0.0	0.0	
0	2	M	0.0	0.0	0.0	0.0	
0	3	M	0.0	0.0	0.0	0.0	
1	1	F	21.4	42.5	48.0	20.6	
1	2	M	26.3	29.3	60.0	34.6	
1	3	M	19.1	28.1	117.6	27.0	
2	1	F	21.1	31.6	30.0	20.0	
2	2	F	26.0	34.0	134.0	31.8	
2	3	F	14.0	32.7	85.0	19.6	
3	1	M	20.0	65.0	43.0	41.0	
3	2	M	15.0	78.0	35.0	51.0	
3	3	M	14.9	17.0	157.0	51.0	
4	1	М	19.0	46.0	04.0	52.0	
	T .			46.0	94.0	53.0	
4	2 3	F	18.0	31.0	82.0	41.0	
4	3	F	25.0	33.0	85.0	37.8	
5	1	F	22.3	40.8	88.3	59.3	
5	2	M	29.9	24.6	78.7	40.6	
5	3	M	19.6	56.5	42.2	34.5	
6	1	F	40.6	65.8	96.7	59.3	
6	2	M	19.3	44.1	65.3	39.7	
6	3	F	26.2	51.3	54.9	30.5	
8	1	F	29.6	59.8	76.7	53.1	
8	2	F	19.8	28.9	53.3	32.7	
8	2 3	M	12.3	41.2	50.9	60.3	
10	1	M	26.9	56.3	83.8	63.3	
10	2	M	41.6	49.3	47.5	41.8	
10	3	M	33.3	30.7	68.9	50.3	
12	1	M	43.5	73.4	73.8	83.1	
12	2	F	29.3	43.0	89.4	58.2	
12	3	F	32.2	47.2	116.0	49.0	
14	1	F	51.0	92.3	98.0	75.2	
14	2	M	43.5	65.9	62.4	61.3	
14	3	F	39.2	59.5	79.3	54.4	
16	1	M	39.2	82.1	78.6	58.3	
16	2	M	61.3	55.7	53.7	33.9	
16	3	F	50.2	64.2	61.9	48.2	
19	1	M	55.7	62.3	65.3	49.2	
19	2	M	43.2	57.6	23.2	33.1	
19	3	M	37.1	38.8	36.4	30.8	
-	-	••		55.0	20.7	50.0	

			TAB	LE A-12 (contin	nued)	
Time Day	Animal No.	Sex	Gills	Muscles	G.I.	Hepta.
22	1	F	19.0	40.0	26.0	40.0
22	2	M	32.0	48.2 31.2	26.0 50.0	40.9
22	3	F	20.0			37.1
22	,	r	20.0	77.0	46.0	35.0
26	1	M	26.9	29.4	52.5	50.3
26	2	M	14.0	42.0	68.2	40.7
26	3	F	35.1	63.8	79.6	62.6
29	1	F	29.0	25.9	44.0	30.3
29	2	M	20.0	48.0	60.0	20.0
29	3	F	28.0	36.8	54.0	23.7
36	1	F	25.6	42.7	73.0	36.7
36	2	F	22.5	61.0	69.8	42.7
36	3	M	27.2	47.3	92.0	67.3
45	1	F	45.1	64.3	60.2	62.3
45	2	M	38.6	135.7	53.0	40.0
45	3	F	20.0	57.4	77.3	21.4
	J	•	20.0	37.4	77.3	21.4
47	1	M	56.4	69.0	185.0	21.2
47	2	M	48.0	57.8	160.0	47.5
47	3	F	46.0	58.0	87.8	19.0
49	1	M	39.8	166.6	172.9	32.6
49	2	F	22.0	50.6	42.1	48.0
49	3	M	17.6	52.5	38.8	45.0
51	1	F	47.2	40.1	57.9	16.8
51	2	M	51.9	41.6	48.2	31.5
51	3	. F	35.7	28.6	47.9	82.6
53	1	M	53.6	47.6	55.8	26.9
53	2	M	23.1	67.7	43.2	35.8
53	3	F	53.6	23.4	33.6	100.0
55	1	M	42.3	24.5	39.8	67.3
55	2	F	63.1	151.5	54.8	31.0
55	3	M	52.3	66.2	47.8	79.5
57	1	М	20.5	181.5	62.3	94.3
57	2	M	28.2	42.1	55.5	47.7
57	3	F	36.3	14.3	41.0	16.5
59	1	M	41.0	53.0	37.8	101.2
59	2	M	26.5	84.3	86.1	55.4
59	3	M	31.3	62.8	59.7	31.3
61	1	M	32.5	25.9	104.3	85.6
61	2	M	47.1	51.6	81.4	58.1
61	3	F	47.1	49.5	64.6	51.3
OI			43.3	47.J	U4.U	21.3

TABLE A-13 UPTAKE DATA FOR INDIVIDUAL CRAWFISH ORGANS FOR SYSTEM III (1000 μ_g/ml EG)

Time Day	Animal .	Sex	Gills	Muscles	G.I.	Hepta.
0	1	M	0.0	0.0	0.0	0.0
Ŏ	2	F	0.0	0.0	0.0	0.0
Ö	3	F	0.0	0.0	0.0	0.0
1	1	M	75.5	89.2	48.0	20.6
1	2	M	26.4	35.5	60.0	34.6
1	3	M	12.6	45.5	117.6	27.0
2	1	F	66.5	122.0	30.0	20.0
2	2	F	43.9	118.9	134.0	31.8
2	3	F	29.9	133.4	85.0	19.6
3	1	M	50.9	144.0	43.0	41.0
3	2	M	50.9	109.0	35.0	51.0
3	3	M	76.4	174.0	157.0	51.0
4	1	M	54.0	112.0	94.0	53.0
4	2	F	60.2	58.2	82.0	41.0
4	3	F	66.5	153.8	85.0	37.8
5	1	F	69.2	130.1	88.3	59.3
5	2	M	45.7	89.8	78.7	40.6
5	3	F	59.1	100.3	42.2	34.5
6	1	F	159.7	214.3	96.7	59.3
6	2	F	119.2	166.9	65.3	39.7
6	3	M	110.3	173.3	54.9	30.5
8	1	M	123.1	168.1	76.7	53.1
8	2	F	82.4	109.0	53.3	32.7
8	3	F	95.4	150.0	50.9	60.3
10	1	M	167.2	178.9	83.8	63.3
10	2	M	142.7	127.6	47.5	41.8
10	3	М	113.9	136.3	68.9	50.3
12	1	M	177.4	259.3	73.8	83.1
12	2	M	110.1	188.1	89.4	58.2
12	3	F	98.2	201.1	116.0	49.0
14	1	F	201.1	278.3	98.0	75.2
14	2	M	160.7	226.9	62.4	61.3
14	3	M	253.9	216.7	79.3	54.4
16	1	M	214.0	266.3	78.6	58.3
16	2	F	141.1	215.7	53.7	33.9
16	3	F	156.1	250.1	61.9	48.2
19	1	F	170.7	237.6	65.3	49.2
19	2	F	195.5	169.8	23.2	33.1
19	3	M	218.5	190.3	36.4	30.8

Time	Animal	Sex	Gills	Muscles	G.I.	Hepta.
Day	No.					
22	1	F	138.0	207.0	96.0	105.4
22	2	F	113.0	181.0	186.0	138.0
22	3	F	155.0	170.0	145.5	132.2
26	1	M	148.0	160.0	156.0	211.0
26	2	F	147.2	194.0	150.8	111.0
26	3	M	165.6	220.0	54.0	84.2
29	1	M	126.0	105.1	101.2	126.5
29	2	F	156.6	185.5	181.6	186.0
29	3	F	93.2	102.1	110.7	98.6
	•	-	73.2	102.1	110.7	30.0
36	1	М	207.0	269.0	209.0	166.0
36	2	M	126.0	110.2	115.0	85.2
36	3	F	117.0			
30	3	F	117.0	96.4	175.0	71.7
45	1	F	288.0	051 0	206.0	106.0
45	2	M		251.0	396.0	106.0
45 45	3		154.0	835.7	130.0	235.0
45	3	M	216.0	57.4	477.0	96.0
47	1	-	100 0	101 0		^
	1	F	120.0	191.0	63.0	77.0
47	2	M	392.2	222.0	29.0	216.0
47	3	F	189.7	122.3	77.0	72.1
49	•	1.0	001 0			
	1	M	291.0	409.0	395.0	281.0
49	2	M	124.0	254.0	243.0	125.0
49	3	F	140.0	330.0	167.2	120.0
-1	•				4	
51	1	M	239.9	124.8	266.6	78.2
51	2	F	129.0	118.8	220.9	94.7
51	3	F	280.7	248.0	55.3	120.6
53			152.0	335 5	10/ 0	
	1	F	153.2	115.5	124.8	170.7
53	2	M	236.4	58.1	92.6	39.4
53	3	F	181.2	248.0	126.0	101.3
55	1	v	207 2	200 5	227 (000 5
		M	307.3	308.5	317.6	228.5
55 55	2	M	132.7	147.0	146.3	463.5
55	3	M	135.0	128.0	122.1	144.0
57	1	F	173.2	202.0	<i>(</i> 2 0	72.0
57	2	r M		282.9	63.0	73.0
	3		231.3	144.9	586.1	212.9
57	3	M	288.8	270.7	148.0	129.7
59	1	M	286.5	170 €	102 2	125.7
59	2	F		172.6	193.3	
	3		228.2	82.9	106.4	150.0
59	3	F	396.5	160.8	106.2	82.6
61	1	F	161.0	185.0	268.0	213.0
61	2	F F	213.0	212.0	317.0	268.0
61	3	F	240.0	234.0	220.0	189.0
OI	J	E.	440.0	234.V	440.0	107.0

TABLE A-14 LOSS DATA FOR INDIVIDUAL CRAWFISH ORGANS FOR SYSTEM I (50 μ g/ml EG)

Time Day	Animal No.	Sex	Gills .	Muscles	G.I.	Hepta.	
0	1	F	16.1	14.0	19.8	17.9	
	2 3	F	12.1	11.5	21.4	30.9	
	3	М	10.3	40.6	23.2	42.6	
1	1 2 3	<u>M</u> .	15.7	19.0	24.2	8.0	
	2	F	0.0	17.5	0.0	20.3	
	3	F	10.8	11.3	12.5	87.2	
2	1 2 3	M	10.0	9.0	13.6	23.3	
	2	M	0.0	13.0	0.0	0.0	
	3	M	0.0	14.0	0.0	0.0	
3	1	M	0.0	0.0	0.0	0.0	
	2	F	0.0	0.0	0.0	0.0	
	3	F	0.0	0.0	0.0	0.0	
4	1	M	0.0	0.0	0.0	0.0	
	2 3	M	0.0	0.0	0.0	0.0	
	3	M	0.0	0.0	0.0	0.0	
5	1	M	0.0	0.0	0.0	0.0	
	2 3	F	0.0	0.0	0.0	0.0	-
	3	F	0.0	0.0	0.0	0.0	
6	1	F	0.0	0.0	0.0	0.0	
	2 3	F F	0.0	0.0	0.0	0.0	
	3	r	0.0	0.0	0.0	0.0	
7	1	F	0.0	0.0	0.0	0.0	
	2 3	F	0.0	0.0	0.0	0.0	
	3	M	0.0	0.0	0.0	0.0	
10	1 2	M	0.0	0.0	0.0	0.0	
	2	M	0.0	0.0	0.0	0.0	
	3	F	0.0	0.0	0.0	0.0	
12	1 2 3	F F F	0.0	0.0	0.0	0.0	
•	2	<u>F</u>	0.0	0.0	0.0	0.0	
	3	F	0.0	0.0	0.0	0.0	
18	1 2 3	M	0.0	0.0	0.0	0.0	
	2	M	0.0	0.0	0.0	0.0	
	3	M	0.0	0.0	0.0	0.0	
25	1 2 3	M	0.0	0.0	0.0	0.0	
	2	M	0.0	0.0	0.0	0.0	
	3	М	0.0	0.0	0.0	0.0	
32	1 2 3	M	0.0	0.0	0.0	0.0	
	2	F	0.0	0.0	0.0	0.0	
	3	M	0.0	0.0	0.0	0.0	

Time Day	Animal No.	Sex	Gills	Muscles	G.I.	Hepta.
39	1	M	0.0	0.0	0.0	0.0
	2	M	0.0	0.0	0.0	0.0
	3	M	0.0	0.0	0.0	0.0
46	1	M	0.0	0.0	0.0	0.0
	2	F	0.0	0.0	0.0	0.0
	3	M	0.0	0.0	0.0	0.0
67	1	M	0.0	0.0	0.0	0.0
	2	M	0.0	0.0	0.0	0.0
	3	М	0.0	0.0	0.0	0.0

TABLE A-15 LOSS DATA FOR INDIVIDUAL CRAWFISH ORGANS FOR SYSTEM II (200 μ g/ml EG)

Time	Animal	C	0411-	Year 1	Α.Τ.	11
Day	No.	Sex	Gills	Muscles	G.I.	Hepta.
· 0	1	F	16.9	125.9	104.3	85.6
	2	F	47.1	82.6	41.4	28.1
	3	M	45.3	99.5	64.6	51.3
1	1	F	23.7	73.0	74.0	18.3
	2	M	34.6	53.3	50.9	84.0
	3	M	12.6	61.3	26.7	38.4
2	1	М	21.8	52.7	0.0	20.2
	2	M	0.0	32.6	48.0	61.0
	3	M				
	3	F1	10.4	67.1	0.0	0.0
3	1	M	0.0	0.0	0.0	0.0
	2	М	0.0	24.8	0.0	0.0
	2 3	F	0.0	52.3	4.1	0.0
4	1	M	0.0	0.0	0.0	0.0
	2	M	0.0	22.3	0.0	0.0
	3	F	0.0	30.6	. 0.0	17.0
		•	0.0	30.6	. 0.0	17.0
5	1	M	0.0	0.0	7.4	0.0
	2	M	0.0	0.0	10.2	0.0
	2 3	M	0.0	0.0	0.0	0.0
6	1	M	0.0	0.0	0.0	0.0
•	2	M	0.0	0.0		
	3				0.0	0.0
	3	F	0.0	0.0	0.0	0.0
7	1	M	0.0	0.0	0.0	0.0
	2	M	0.0	0.0	0.0	0.0
	3	M	0.0	0.0	0.0	0.0
10	1	F	0.0	0.0	0.0	0.0
10				0.0	0.0	0.0
	2	F	0.0	0.0	0.0	0.0
	3	F	0.0	0.0	0.0	0.0
12	1	M	0.0	0.0	0.0	0.0
	2	M	0.0	0.0	0.0	0.0
	2 3	F	0.0	0.0	0.0	0.0
18	1	M	0.0	0.0	0.0	0.0
10	2	F				
	1 2 3		0.0	0.0	0.0	0.0
	3	F	0.0	0.0	0.0	0.0
25	1 2 3	M	0.0	0.0	0.0	0.0
	2	F	0.0	0.0	0.0	0.0
	3	M	0.0	0.0	0.0	0.0
32	1 2 3	M	0.0	0.0	0.0	0.0
	2	M	0.0	0.0	0.0	0.0
	3	F	0.0	0.0	0.0	0.0
	-	-			0.0	V. U

Time Day	Animal No.	Sex	Gills	Muscles	G.I.	Hepta.
39	1	M	0.0	0.0	0.0	0.0
	2	F	0.0	0.0	0.0	0.0
	3	F	0.0	0.0	0.0	0.0
46	1	M	0.0	0.0	0.0	0.0
	2	M	0.0	0.0	0.0	0.0
	3	F	0.0	0.0	0.0	0.0
67	1	F	0.0	0.0	0.0	0.0
	2	M	0.0	0.0	0.0	0.0
	3	F	0.0	0.0	0.0	0.0

TABLE A-16 LOSS DATA FOR INDIVIDUAL CRAWFISH ORGANS FOR SYSTEM III (1000 μ g/ml EG)

Time	Animal	Sex	Gills	Muscles	G.I.	Hepta.
Day	No.	_		105.0	160.0	112 0
0	1	F	111.0	185.0	168.0	113.0
	2	F	441.1	712.0	517.0	368.0
	3	F	31.0	234.0	120.0	189.0
1	1	F	52.2	81.8	158.4	46.0
	2	M	53.4	98.0	60.7	70.3
	3	F	34.3	84.4	61.8	116.6
2	1	F	0.54	42.8	2.1	36.6
	2	M	20.5	52.5	8.5	5.8
	2 3	F	26.8	68.8	45.8	40.4
3	1	М	0.0	47.1	0.0	0.0
-	2	F	49.2	19.2	0.0	6.7
	2 3	F	0.0	92.2	0.0	37.4
4	1	F	12.9	25.6	0.0	5.5
7	2	F	10.0	12.0	18.4	37.8
	2 3	F	21.8	44.6	98.0	7.3
5	1	F	20.0	118.5	0.0	0.0
_	2	M	0.0	0.0	10.2	0.0
	2 3	M	0.0	0.0	0.0	0.0
6	1	M	0.0	0.0	0.0	0.0
	1 2 3	M	0.0	0.0	0.0	0.0
	3	F	0.0	0.0	0.0	0.0
7	1	M	0.0	0.0	0.0	0.0
	2	M	0.0	0.0	0.0	0.0
	2 3	M	0.0	0.0	0.0	0.0
10	1	M	0.0	0.0	0.0	0.0
	1 2	M	0.0	0.0	0.0	0.0
	3	F	0.0	0.0	0.0	0.0
12	1	M	0.0	0.0	0.0	0.0
	2	F	0.0	0.0	0.0	0.0
	1 2 3	F	0.0	0.0	0.0	0.0
18	1	F	0.0	0.0	0.0	0.0
	2	M	0.0	0.0	0.0	0.0
	1 2 3	M	0.0	0.0	0.0	0.0
25	1	М	0.0	0.0	0.0	0.0
	1 2 3	M	0.0	0.0	0.0	0.0
	3	F	0.0	0.0	0.0	0.0
32	1	M	0.0	0.0	0.0	0.0
	1 2 3	F	0.0	0.0	0.0	0.0
	3	М.	0.0	0.0	0.0	0.0
	-	44 (V.V			w.w

Time Day	Animal No.	Sex	Gills	Muscles	G.I.	Hepta.
39	1	F	0.0	0.0	0.0	0.0
	2	F	0.0	0.0	0.0	0.0
	3	М	0.0	0.0	0.0	0.0
46	1	M	0.0	0.0	0.0	0.0
	2	M	0.0	0.0	0.0	0.0
	3	М	0.0	0.0	0.0	0.0
67	1	M	0.0	0.0	0.0	0.0
	2	F	0.0	0.0	0.0	0.0
	3	F	0.0	0.0	0.0	0.0

APPENDIX B

Monitoring Water Parameters:

Dissolved oxygen and pH meters were calibrated before each use. Alkalinity and total hardness were determined according to procedures in Standard Methods for Testing Water and Waste Water. All glassware were acid washed and rinsed with deionized, distilled water.

Ethylene Glycol Standards:

Preparation and analysis

A stock solution of 1000 mg/l ethylene glycol concentration was prepared by adding 0.9 ml of pure ethylene glycol in a liter of distilled water. The stock solution of ethylene glycol was used to prepare standards of different ethylene glycol concentrations. Ethylene glycol standards were prepared daily and analyzed before sample analysis (see Table B-1).

1 11.00 M

Section 2013

C. 653794

TABLE B-1
STANDARDS FOR ETHYLENE GLYCOL CONCENTRATION
ANALYZED BY GAS CHROMATOGRAPH

Expected Value mg/1	Observed Value mg/1
40	40.0
30	30.5
30	30.8
25	25.4
40	42.0
30	30.5
40	29.8
30	22.5
40	28.2
30	24.7
30	30.5
30	30.0

Field and Laboratory Samples:

Field samples including water, sediment, soil and air filters were collected in acid washed glass containers, preserved with 2% propanol and refrigerated until analysis.

Crawfish tissues in the laboratory were immediately extracted following dissection. They were centrifuged and the supernatant was then analyzed.

Recovery of Ethylene Glycol and Crawfish Tissues:

Known concentrations of ethylene glycol were added to ethylene glycol free crawfish tissues and were treated exactly the same as sample and analyzed. Percent recovery was determined (Table B-2).

TABLE B-2
PERCENT RECOVERY OF ETHYLENE GLYCOL FROM CRAWFISH TISSUES

Tissues			% Re	covery		
-	1	2	3	4	5	Average
•	· · · · · · · · · · · · · · · · · · ·					
Gills	60	62	75	83	73	71
Muscles	80	66	83	84	79	78
G.I.	69	72	77	65	66	70
Hepatopancreas	69	67	85	89	84	79

Recovery of Ethylene Glycol from Feed (Quaker Oats):

Ten grams of commercial Quaker Oats, which was used as crawfish feed, were placed in known concentration of ethylene glycol, treated exactly the same as samples, and analyzed. Percent recovery was determined (Table B-3).

TABLE B-3
PERCENT RECOVERY OF ETHYLENE GLYCOL FROM QUAKER OATS

Expected EG Concentration (mg/l)	Observed EG Concentration (mg/l)	Recovery
0.0	0.0	
10.0	10.0	100
50.0	49.0	98
100.0	101.0	100

Spike samples:

Samples were spiked with known ethylene glycol concentrations, treated exactly the same as samples, and analyzed (Table B-4).

TABLE B-4
PERCENT RECOVERY OF ETHYLENE GLYCOL FROM
SPIKED CRAWFISH TISSUES

Tissue	Expected Value mg/l	Observed Value mg/l	% Recovery
Gill	40.0	36.4	91
Muscle	45.6	41.5	91
G.I.	30.0	23.5	78
Hepatopancreas	46.8	37.8	81

Figure B-1 represents the standard curve of ethylene glycol concentrations when analyzed by gas chromatograph. The least-square best fit line was drawn. This curve was used to determine the concentrations of ethylene glycol in the analyzed samples.

Recovery of Ethylene Glycol from Soil, Water and Sediment:

Known concentrations of ethylene glycol were added to ethylene glycol free water, sediment and soil samples, treated exactly the same as samples, and analyzed. Percent recovery was determined (Table B-5).

TABLE B-5
PERCENT RECOVERY OF ETHYLENE GLYCOL FROM WATER, SOIL
AND SEDIMENT SAMPLES

Sample	Expected EG Concentration (mg/l)	Observed EG Concentration (mg/l)	% Recovered
Water	0.0	0.0	
WACCI	10.0	10.0	100
	30.0	30.6	100
	60.0	60.0	100
	100.0	100.0	100
Soil	0.0	0.0	
DV	10.0	11.0	100
	30.0	30.0	100
	60.0	63.0	100
	100.0	98.0	98
Sediment	0.0	0.0	
	10.0	10.0	100
	50.0	50.5	100

Figure B-1. Standard curve of ethylene glycol using a gas chromatograph

TABLE B-6
RESULTS OF STANDARD SAMPLES ANALYZED EVERY TEN SAMPLES
TO CHECK FOR THE ACCURACY OF THE ANALYSIS DURING THE UPTAKE PHASE

	•	
Time	Expected (mg/l)	Observed (mg/l)
Day 1	5.0	5.4
•	5.0	4.9
	5.0	6.1
	5.0	5.2
Day 2	5.0	5.0
_	5.0	5.5
	5.0	5.8
	5.0	5.2
Day 3	5.0	4.8
	10.0	9.2
	5.0	5.6
	10.0	10.4
Day 4	5.0	4.2
	5.0	4.9
	5.0	5.2
	5.0	5.2
Day 5	5.0	4.8
	10.0	12.4
	5.0	4.6
	10.0	10.0
Day 6	5.0	4.9
	5.0	5.1
	10.0	12.0
	10.0	10.4
Day 8	5.0	4.8
	10.0	11.4
	5.0	4.9
	10.0	10.6
Day 10	5.0	5.3
	10.0	10.6
	5.0	4.9
	10.0	10.2
Day 12	5.0	4.8
	10.0	10.4
	5.0	5.4
	10.0	10.4

TABLE B-6 (continued)

Time	Expected (mg/l)	Observed (mg/l)
Day 14	5.0 10.0 5.0	4.9 9.8 4.9
	10.0	10.6
Day 16	5.0 10.0	5.2 10.6
	5.0 10.0	5.8 10.4
Day 19	5.0	5.2
	5.0 5.0	4.9 5.5
	5.0	5.0
Day 22	5.0	5.4
	10.0	4.9
	5.0 10.0	5.4 5.8
Day 26	5.0	4.1
	10.0	8.9
	5.0 10.0	4.9 5.2
Day 29	5.0	4.8
	10.0 5.0	9.8 5.4
	10.0	9.9
Day 36	5.0	4.6
	5.0 10.0	4.4 10.8
,	10.0	12.2
Day 45	5.0	5.5
	10.0 5.0	11.2 5.8
	5.0	5.2
Day 47	5.0	4.9
	5.0 5.0	5.4 5.2
	5.0	5.6
Day 49	5.0	4.8
	5.0	5.2
	5.0 5.0	5.5 5.6

TABLE B-6 (continued)

Time	Expected (mg/l)	Observed (mg/l)
Day 51	10.0	10.4
2 , 2 	5.0	5.4
	10.0	11.2
	5.0	4.9
Day 53	5.0	4.8
- · 3	5.0	5.6
	5.0	5.8
	5.0	5.0
Day 55	5.0	4.9
2 , 3.0	5.0	5.8
	10.0	11.0
	10.0	10.4
Day 57	5.0	5.5
.	5.0	5.8
	5.0	4.8
	5.0	4.1
Day 59	5.0	5.4
•	5.0	5.8
	5.0	4.9
· · · · · · · · · · · · · · · · · · ·	5.0	4.6
Day 61	5.0	4.8
-	10.0	9.0
	10.0	11.0
	5.0	4.8

TABLE B-7
RESULTS OF STANDARD SAMPLES ANALYZED EVERY TEN SAMPLES
TO CHECK FOR THE ACCURACY OF THE ANALYSIS DURING THE LOSS PHASE

Time	Expected (mg/1)	Observed (mg/l)
Day 1	5.0	4.6
, -	5.0	4.4
	10.0	10.8
	10.0	12.2
Day 2	5.0	5.5
•	10.0	11.2
	5.0	5.8
	5.0	5.2
Day 3	5.0	4.9
	5.0	5.4
	5.0	5.2
	5.0	5.6
Day 4	5.0	4.8
	5.0	5.2
	5.0	5.5
	5.0	5.6
Day 5	10.0	10.4
	5.0	5.4
	10.0	11.2
	5.0	4.9
Day 6	5.0	4.8
	5.0	5.6
	5.0	5.8
	5.0	5.0
Day 7	5.0	4.9
	5.0	5.8
	10.0	11.0
	10.0	10.4
Day 10	5.0	5.5
	5.0	5.8
	5.0	4.8
	5.0	4.1
Day 12	5.0	5.4
	5.0	5.8
	5.0	4.9
	5.0	4.6

TABLE B-7 (continued)

Time	Expected (mg/1)	Observed (mg/1)
Day 18	5.0 10.0 10.0 5.0	4.8 9.0 11.0 4.8
Day 25	5.0 10.0 5.0 10.0	5.2 10.6 5.8 10.4
Day 32	5.0 5.0 5.0 5.0	5.2 4.9 5.5 5.0
Day 39	5.0 10.0 5.0 10.0	5.4 4.9 5.4 5.8
Day 46	5.0 10.0 5.0 10.0	4.1 8.9 4.9 5.2
Day 67	5.0 10.0 5.0 10.0	4.8 9.8 5.4 9.9

APPENDIX C

Data fitting of the results in a one compartment model for the selected tissues.

Model fitting showing effect of weight and sex of crawfish on the concentration of ethylene glycol in selected tissues.

One-way ANOVA for uptake and loss kinetics, bioconcentration factor and half-lives.

One Compartment Model Equation:

C/m = ki/ko (1-exp(-ko*time))

Where:

C - concentration of the chemical in animal tissue

m - concentration of the chemical in the medium

ki = rate of the chemical uptake

ko = rate of the chemical elimination

A plot of C/m vs. 1-exp(-ko*time) is a straight line with slope equal to ki/ko.

TABLE C-1 DATA ANALYSIS OF GILLS SAMPLES FOR ANIMALS EXPOSED TO SYSTEM I (50 μ g/ml EG BY ANOVA (SHOWING LACK-OF-FIT)

Source	df	SS	MS	F ratio
Total	74	1.006		
Regression	1	0.426	0.426	53.6
Residual	73	0.580	0.008	,
Lack of Fit	23	0.214	0.0093	1.27 (not significant
Pure Error	50	0.366	0.0073	at a = 0.05)

Slope - ki/ko - 0.33

ko = 0.547

ki = 0.18

TABLE C-2
DATA ANALYSIS OF MUSCLE SAMPLES FOR ANIMALS EXPOSED TO SYSTEM I (50 μ g/ml EG) BY ANOVA (SHOWING LACK-OF-FIT)

Source	df	SS	MS	F ratio
Total	74	4.670		
Regression	1	1.202	1.202	25.3
Residual	73	3.468	0.0475	
Lack of Fit	23	0.979	0.0426	0.86 (not significant at a = 0.05)
Pure Error	50	2.489	0.0498	at a = 0.05)

Slope - ki/ko - 0.572

ko = 0.616

ki = 0.352

TABLE C-3 DATA ANALYSIS OF G.I. SAMPLES FOR ANIMALS EXPOSED TO SYSTEM I (50 μ g/ml EG) BY ANOVA (SHOWING LACK-OF-FIT)

Source	df	SS	MS	F ratio
Total	74	13.557		
Regression	1	2.626	2.626	17.5
Residual	73	10.930	0.1497	
Lack of Fit	23	4.775	0.207	1.68 (not significant
Pure Error	50	6.156	0.123	at a = 0.05)

Slope - ki/ko = 0.859

ko = 0.672

ki = 0.577

TABLE C-4 DATA ANALYSIS OF HEPTA. SAMPLES FOR ANIMALS EXPOSED TO SYSTEM I (50 μ g/ml EG) BY ANOVA (SHOWING LACK-OF-FIT)

Source	df	SS	MS	F ratio
Total	77	4.566		
Regression	1	1.189	1.189	26.8
Residual	76	3.376	0.0444	
Lack of Fit	24	1.496	0.0623	1.72 (not significant
Pure Error	52	1.88	0.0362	at a = 0.05)

Slope - ki/ko - 0.532

ko = 0.453

ki = 0.241

TABLE C-5 DATA ANALYSIS OF GILLS SAMPLES FOR ANIMALS EXPOSED TO SYSTEM II (200 μ g/ml EG) BY ANOVA (SHOWING LACK-OF-FIT)

Source	df	SS	MS	F ratio
Total	77	0.373		
Regression	1	0.113	0.113	33
Residual	76	0.259	0.003	
Lack of Fit	24	0.115	0.0047	1.72 (not significant at a = 0.05)

TABLE C-6 DATA ANALYSIS OF MUSCLE SAMPLES FOR ANIMALS EXPOSED TO SYSTEM II (200 μ g/ml EG) BY ANOVA (SHOWING LACK-OF-FIT)

Source	df	SS	MS	F ratio
Total	77	1.756		
Regression	1	0.333	0.333	17.8
Residual	76	1.423	0.018	
Lack of Fit	24	0.41	0.0171	0.88 (not significant
Pure Error	52	1.013	0.0195	at a = 0.05)

Slope = ki/ko = 0.282

ko = 0.454

TABLE C-7 DATA ANALYSIS OF HEPTA. SAMPLES FOR ANIMALS EXPOSED TO SYSTEM II (200 μ g/ml EG) BY ANOVA (SHOWING LACK-OF-FIT)

Source	df	SS	Ms	F ratio
Total	73	1.330		
Regression	1	0.1336	0.1336	8.03
Residual	72	1.197	0.017	
Lack of Fit	21	0.4388	0.0209	1.39 (not significant
Pure Error	51	0.7582	0.0150	at a = 0.05)

Slope - ki/ko - 0.182

ko = 0.490

TABLE C-8 DATA ANALYSIS OF G.I. SAMPLES FOR ANIMALS EXPOSED TO SYSTEM II (200 µg/ml EG) BY ANOVA (SHOWING LACK-OF-FIT)

Source	df	SS	HS	F ratio
Total	77	0.849		
Regression	1	0.219	0.219	26.4
Residual	76	0.630	0.0083	
Lack of Fit	24	0.218	0.0091	1.15 (not significant at a = 0.05)
Pure Error	52	0.412	0.0079	at a = 0.03)

Slope = ki/ko = 0.236ko = 0.524

TABLE C-9 DATA ANALYSIS OF GILLS SAMPLES FOR ANIMALS EXPOSED TO SYSTEM III (1000 μ g/ml EG) BY ANOVA (SHOWING LACK-OF-FIT)

Source	df	SS	MS	F ratio
Total	77	0.534		
Regression	1	0.092	0.092	15.8
Residual	76	0.442	0.0058	
Lack of Fit	24 ·	0.2063	0.0085	1.8 (not significant
Pure Error	52	0.2357	0.00453	at a = 0.05)

Slope = ki/ko = 0.175 ko = 1.327 ki = 0.232

TABLE C-10 DATA ANALYSIS OF MUSCLES SAMPLES FOR ANIMALS EXPOSED TO SYSTEM III (1000 $\mu \text{g/ml}$ EG) BY ANOVA (SHOWING LACK-OF-FIT)

Source	df	SS	ms	F ratio
Total	75	0.472		
Regression	1	0.121	0.121	25.5
Residual	74	0.351	0.0047	
Lack of Fit	24	0.142	0.0059	1.4 (not significant
Pure Error	50	0.209	0.0042	at a = 0.05)

Slope - ki/ko - 0.199

ko = 1.185

TABLE C-11 DATA ANALYSIS OF G.I. SAMPLES FOR ANIMALS EXPOSED TO SYSTEM III (1000 μ g/ml EG) BY ANOVA (SHOWING LACK-OF-FIT)

Source	df	ss	MS	F ratio
Total	72	0.7125		
Regression	1	0.1304	0.1304	15.9
Residual	71	0.5822	0.0082	
Lack of Fit	21	0.127	0.0060	0.66 (not significant
Pure Error	50	0.455	0.0091	at a = 0.05)

Slope = ki/ko = 0.205

ko - 1.108

ki = 0.227

TABLE C-12 DATA ANALYSIS OF HEPTA. SAMPLES FOR ANIMALS EXPOSED TO SYSTEM III (1000 μ g/ml EG) BY ANOVA (SHOWING LACK-OF-FIT)

Source	đ£	SS	MS	F ratio
Total	77	0.398		
Regression	1 ·	0.083	0.083	20
Residual	71	0.3149	0.0041	
Lack of Fit	24	0.123	0.0051	1.38 (not significant
Pure Error	52	0.192	0.0037	at a = 0.05)

Slope = ki/ko = 0.161

ko = 0.969

TABLE C-13

MODEL FITTING RESULTS SHOWING EFFECT OF WEIGHT
ANS SEX OF CRAWFISH ON ETHYLENE GLYCOL CONCENTRATION
IN GILLS SYSTEM I

Independent Variable	Coefficient	Std. Error	T-value	Sig. Level
Constant	0.21	0.08	2.63	0.01
Time	0.002	0.0008	2.4	0.018
Sex	0.0048	0.034	0.14	0.89
Weight	0.0046	0.052	0.87	0.38

R-SQRD (ADJ.) = 0.0615

ANOVA for variables in the order fitted

Source	SS	df	MS	F-Ratio	P-value
ime	0.144	1	0.144	6.99	0.01
ex	0.0018	1	0.0018	0.09	0.769
eight	0.016	1	0.016	0.77	0.393

	Constant	Time	Sex	Weight
1	1.000	-0.142	-0.504	-0.69
Constant	-0.142	1,000	0.043	-0.19
ime	-0.504	0.043	1.000	-0.172
Sex Veight	-0.694	-0.190	-0.172	1.000

TABLE C-14

MODEL FITTING RESULTS SHOWING EFFECT OF WEIGHT

ANS SEX OF CRAWFISH ON ETHYLENE GLYCOL CONCENTRATION

IN GILLS SYSTEM II

Independent Variable	Coefficient	Std. Error	T-value	Sig. Level
Constant	0.093	0.044	2.09	
Time	0.00091	0.0004	2.16	
Sex	0.0023	0.017	0.136	
Weight	0.024	0.0029	0.825	

R-SQRD (ADJ.) = 0.0615

ANOVA for variables in the order fitted

Source	SS	df	MS	F-Ratio	P-value
Time	0.032	1	0.032	5.93	0.017
Sex	0.00068	1	0.00068	0.01	0.912
Weight	0.00369	1	0.0369	0.68	0.42

	Constant	Time	Sex	Weight
Constant	1.000	-0.119	-0.61	0.75
Time	-0.119	1.000	0.093	-0.245
	-0.607	0.093	1.000	0.0285
Sex Weight	-0.746	-0.243	0.285	1.000

TABLE C-15

MODEL FITTING RESULTS SHOWING EFFECT OF WEIGHT
ANS SEX OF CRAWFISH ON ETHYLENE GLYCOL CONCENTRATION
IN GILLS SYSTEM III

Independent Variable	Coefficient	Std. Error	T-value	Sig. Level
Constant	0.09	0.04	2.24	0.028
Time	0.002	0.0004	5.6	0.000
Sex	-0.012	0.017	-0.688	0.494
Weight	-0.0009	0.026	0.036	0.971

R-SQRD (ADJ.) = 0.288

ANOVA for variables in the order fitted

Source	SS	df	MS	F-Ratio	P-value
Time	0.18	1	0.18	32.5	0.000
Sex Weight	0.0027 0.00007	1	0.0027 0.000007	0.49 0.00	0.495 0.972

	Constant	Time	Sex	Weight
Constant	1.000	-0.096	-0.544	-0,693
Time	-0.096	1,000	0.022	-0.213
Sex	-0.539	0.022	1.000	0.123
Weight	-0.693	-0.213	-0.123	1.000

TABLE C-16; MODEL FITTING RESULTS SHOWING EFFECT OF WEIGHT: ANS SEX OF CRAWFISH ON ETHYLENE GLYCOL CONCENTRATION IN MUSCLES SYSTEM: II

Independent Variable	Coefficient	ं Std. Efror स्वत्याप्त	Sig _{d:} Level _{bal} SidalisV
Constant Time	0.199 0.0012		0.036 _{1851 (200}) 0.145 ** ******
Sex Weight	-0.03 · 0.027	0.031.0	0.38 * 1 362 0.422 * 3107

R-SQRD (ADJ.) = 0.0178

isso.o - Cidah taha-a

ANOVA for variables in the order fitted and the sale and anidalizar tol AVONA

o but at catching tot Avona.

Source	: \$\$ 767 °	df (°	MS 35	F-Ratio	P-value _{lo tung}
Time All. 0	0.064	1 WE 2	0.064 £	30.8	1.93 0.084 and
Sex dan 313.0 Weight 525.0	0.01270 0.0135	1. 11% 65 1 81) 10	0.0127(0.0135)	0.610	0.44 x#2 0.43 rdglau

Pearson correlation matrix for the coefficient variables on nonzaleraco coerses

	Constant 302	Time	Sex imajano.Weight	
Constant	1.000 AEE.0-	-0:143	-0.435000 1 -0.785	Constant
Time	0.00 D -0.142 850.0	-1:000	0.125888 5-0.182	Time
Sex	-0.435000.1	-0:125	1.000888 0 -0.134	Sex
Weight	-0.785 £ (5.0-	-0:182	-0.134588 0 1.000	Weight

TABLE C-17
MODEL FITTING RESULTS SHOWING EFFECT OF WEIGHT
ANS SEX OF CRAWFISH ON ETHYLENE GLYCOL CONCENTRATION
IN G.I. SYSTEM I

Independent Variable	Coefficient	Std. Error	T-value	Sig. Level
Constant	0.426	0.216	1.97	0.052
Time	0.0038	0.0025	1.51	0.135
Sex	-0.0246	0.11	-0.223	0.824
Weight	2.45	1.71	1.43	0.157

R-SQRD (ADJ.) - 0.0221

ANOVA for variables in the order fitted

Source	SS	df	MS	F-Ratio	P-value
Time	0.525	1	0.525	2.57	0.114
Sex Weight	0.011 0.419	1	0.011 0.419	0.05 2.05	0.818 0.157

	Constant	Time	Sex	Weight
Constant	1.000	-0.293	-0.534	-0.541
Time	-0.293	1.000	0.029	-0.061
Sex	-0.534	0.029	1.000	-0.311
Weight	-0.541	-0.061	-0.311	1.000

TABLE C-18;
ONE-WAY ANALYSIS OF VARIANCE (ANOVA) FOR THE
UPTAKE RATE CONSTANTS FOR SYSTEMS I (kil),
II (ki2) & III (ki3)

ş			The state of the s		
Tissues	kil	ki2	ki3	Total some ell	
Gills	0.18	0.12	0.232	0.532 - Pk(1)	
Muscles	0.353	0.130	0.236	0.718 - P2	
G.I.	0.577	0.114	0.227	0.918 = P3 📳	
Hepta.	0.241	0.124	0.156	0.521 - P4 got	
	1.35 T1	0.488 T2	0.851 T3	2.869 - G	
Source of Variation	SS	df	MS	F Ratio	
Between Tissues	0.034547	3 .	0.011516	1.118	
Within Tissues	0.155019	8	0.01938	1.88	
ki	0.0932	2	0.0466	4.52	
Residual	0.061819	6	0.01030		

TABLE C-19
ONE-WAY ANALYSIS OF VARIANCE (ANOVA) FOR THE
ELIMINATION RATE CONSTANTS FOR SYSTEMS I (ko1),
II (ko2) & III (ko3)

Tissues	kol	ko2	ko3	Total
Gills	0.457	0.654	1.327	2.438 - P
Muscles	0.616	0.454	1.185	2.255 - P2
G.I.	0.672	0.654	1.108	2.434 - P
Hepta.	0.453	0.524	0.969	1.946 - P
	2.198 T1	2.286 T2	4.589 T3	9.073 - G
Source of Variation	SS	df	Ms	F Ratio
Between Tissues	0.0532	3	0.01773	1.318
Within Tissues	0.9997	8	0.12496	9,29
ko	0.919	2	0.4595	34.2
Residual	0.0807	6	0.01345	

TABLE C-20
ONE-WAY ANALYSIS OF VARIANCE (ANOVA) FOR THE
BIOCONCENTRATION FACTOR (BCF) FOR SYSTEMS I (BCF1),
II (BCF2) & III (BCF3)

Tissues	BCF1	BCF2	BCF3	Total
Gills	0.33	0.177	0.175	0.682 - P1
Muscles	0.572	0.282	0.199	1.236 + P2
G.I.	0.859	0.172	0.205	1.236 - P3
Hepta.	0.532	0.236	0.161	0.929 - P 4
	2.293	0.867	0.74	3.9 - G
	T1 .	T2	Т3	
Source of Variation	SS	df	MS	F Ratio
Between Tissues	0.054	3	0.018	1.10
Within Tissues	0.4697	8	0.0587	3.60
BCF	0.3718	2	0.1859	11.40
Residual	0.0979	6	0.0163	

TABLE C-21
ONE-WAY ANALYSIS OF VARIANCE (ANOVA) FOR THE
BIOLOGICAL HALF-LIVES OF CRAWFISH TISSUE IN
SYSTEMS I (D1), II (D2) & III (D3)

Tissues	D1	D2	D3	Total
Gills	1.27	1.06	0.52	2.85 - P1
Muscles	1.13	1.53	0.58	3.24 - P2
G.I.	1.03	1.06	0.63	2.72 - P3
Hepta.	1.53	1.32	0.72	3.57 - P4
	4.96	4.97	2.45	12.38 - G
	T1	T2	Т3	
Source of Variation	ss	df	MS	F Ratio
Between Tissues	0.1511	3	0.0504	1.86
Within Tissues	1.2229	8	0.15286	3.63
BCF	1.06	2	0.53	19.52
Residual	0.1629	6	0.02715	

	·			